prospects with extended rpa theories
play

Prospects with Extended RPA Theories P. Papakonstantinou Institut - PowerPoint PPT Presentation

Prospects with Extended RPA Theories P. Papakonstantinou Institut f ur Kernphysik, T.U.Darmstadt 1 Overview Introduction From RPA to Second RPA - Formalism and technicalities - Results on Giant Resonances - Issues to be considered


  1. Prospects with Extended RPA Theories P. Papakonstantinou Institut f¨ ur Kernphysik, T.U.Darmstadt 1

  2. Overview ■ Introduction ■ From RPA to Second RPA - Formalism and technicalities - Results on Giant Resonances - Issues to be considered ■ Conclusion and Outlook 2 2

  3. Introduction transformed nuclear collective ? realistic interactions excitations ■ Description based on RPA theories ■ Why extended RPA theories? • More physics • Convergence issues with respect to model space ■ What kind of extension is appropriate? ... remains to be seen • Second RPA to begin with 3 3

  4. From the textbook ■ RPA - Microscopic theory of small-amplitude density fluctuations - Single-particle excitation operators f L ( r ) Y LM (ˆ r ) (+isospin) - GRs : coherent superpositions of ph excitations - Change in single-particle Hamiltonian treated self-consistently ■ Why beyond RPA - Damping of GRs due to coupling of ph state to 2p2h states and higher coupling to surface vibrations increases the width of GRs Γ ν - But also : energetically shifts them by ∆ ν dǫ Γ ν ( ǫ ) Dispersion relation: ∆ ν ( E ) = P � 2 π E − ǫ 4 4

  5. Present Work ■ Two-body UCOM Hamiltonian ☞ Only state-independent, short-range correlations are treated ■ A Second-order RPA Method ☞ Large-scale calculations in closed-shell nuclei ■ Interesting results on ■ Technical issues to be dealt with Giant Resonances ■ Formalism and consistency ■ Learning about the inter- issues of the present SRPA action and the method! method ☞ In most of what follows a UCOM-transformed Argonne V18 potential is used 5 5

  6. UCOM-HF + PT 0 N max = 12 -2 E/A [MeV] -4 -6 -8 . 6 5 R ch [ fm ] 4 3 2 . 1 4 He 24 O 40 Ca 48 Ni 68 Ni 88 Sr 100 Sn 132 Sn 208 Pb 16 O 34 Si 48 Ca 56 Ni 78 Ni 90 Zr 114 Sn 146 Gd ● HF exp � HF+PT2 � HF+PT2+PT3 6 6

  7. UCOM-HF + PT 0 A Ca -2 E / A [MeV] -4 -6 -8 . 36 38 40 42 44 46 48 50 52 54 0 A Sn -2 E / A [MeV] -4 -6 -8 . 100 104 108 112 116 120 124 128 132 A 7 7

  8. UCOM-HF UCOM UCOM V low-k SIII NL3 EXP. V low-k EXP. SIII NL3 (AV18) (AV18) 20 single particle energy levels [MeV] 1f 5/2 1f 5/2 2p 1/2 2p 1/2 2p 3/2 2p 3/2 0 1f 7/2 1f 7/2 1d 3/2 1d 3/2 2s 1/2 -20 2s 1/2 1d 5/2 1d 5/2 1p 1/2 -40 1p 1/2 1p 3/2 1p 3/2 -60 1s 1/2 -80 1s 1/2 40 Ca -100 protons neutrons 8 8

  9. Standard RPA ■ Vibration creation operator: ph O † Q † ph X ν ph Y ν Q † ν = � ph − � ph O ph ; Q ν | RPA � = 0 ; ν | RPA � = | ν � ■ Standard RPA - the RPA vacuum is approximated by the HF ground state: O † ph → a † � RPA | . . . | RPA � → � HF | . . . | HF � ; p a h ■ RPA equations in ph − space: � � � � � � X ν X ν A B = � ω ν Y ν Y ν − B ∗ − A ∗ A ph,p ′ h ′ = δ pp ′ δ hh ′ ( e p − e h )+ H hp ′ ,ph ′ ; B ph,p ′ h ′ = H hh ′ ,pp ′ ; H = H int = T rel + V UCOM ☞ Self-consistent HF+RPA: spurious state and sum rules 9 9

  10. Second RPA ■ Vibration creation operator: Includes 2 p 2 h configurations ph O † p 1 h 1 p 2 h 2 O † ph X ν ph Y ν p 1 h 1 p 2 h 2 X ν Q † ν = � ph − � ph O ph + � p 1 h 1 p 2 h 2 p 1 h 1 p 2 h 2 Y ν − � p 1 h 1 p 2 h 2 O p 1 h 1 p 2 h 2 ■ The SRPA vacuum is approximated by the HF ground state: � SRPA | . . . | SRPA � → � HF | . . . | HF � ■ SRPA equations in ph ⊕ 2 p 2 h − space:       X ν X ν A 12 0 A B X ν X ν       A 21 A 22 0 0       = � ω ν       − B ∗ − A ∗ −A ∗ Y ν Y ν 0       12       Y ν Y ν −A ∗ −A ∗ 0 0 21 22 A ph,p ′ h ′ = δ pp ′ δ hh ′ ( e p − e h )+ H hp ′ ,ph ′ ; B ph,p ′ h ′ = H hh ′ ,pp ′ ; H = H int = T rel + V UCOM A 12 : interactions between ph and 2 p 2 h states A 22 : δ p 1 p ′ 1 δ h 1 h ′ 1 δ p 1 p ′ 1 δ h 1 h ′ 1 ( e p 1 + e p 2 − e h 1 − e h 2 ) + interactions among 2 p 2 h states 10 10

  11. Second RPA ■ Large model spaces: • Number of states up to ≈ 10 6 for the present cases – can get larger • But SRPA matrix is sparse and reduction to half the size is always possible 11 11

  12. Second RPA ■ Large model spaces: • Number of states up to ≈ 10 6 for the present cases – can get larger • But SRPA matrix is sparse and reduction to half the size is always possible ■ Use Lanczos • Find only the lowest eigenvalues | ǫ ν | • ... or the ones closest to a set value E 0 , e.g. H ′ ≡ H − E 0 I � � ⇒ H ′ X ν = ǫ ′ HX ν = ǫ ν X ν ⇐ ν X ν , ǫ ′ ν ≡ ǫ ν − E 0 11 11-a

  13. Second RPA ■ Large model spaces: • Number of states up to ≈ 10 6 for the present cases – can get larger • But SRPA matrix is sparse and reduction to half the size is always possible ■ Use Lanczos • Find only the lowest eigenvalues | ǫ ν | • ... or the ones closest to a set value E 0 , e.g. H ′ ≡ H − E 0 I � � ⇒ H ′ X ν = ǫ ′ HX ν = ǫ ν X ν ⇐ ν X ν , ǫ ′ ν ≡ ǫ ν − E 0 ■ Alternatively, reduce to an ω − dependent problem of RPA size • ... especially if you ignore interactions within 2p2h space: A ∗ ph PHP ′ H ′ A p ′ h ′ PHP ′ H ′ � A php ′ h ′ − → A php ′ h ′ ( ǫ ) = A php ′ h ′ + � ǫ − ( ǫ P + ǫ P ′ − ǫ H − ǫ H ′ ) + i η PHP ′ H ′ 11 11-b

  14. SRPA Eigenstates SRPA and its diagonal approximation (”srpa0”) vs RPA O16 eMax06 lMax06 aHO01.80 :: ISM distributions 300 1000 srpa0 srpa 100 srpa srpa0 10 rpa rpa 250 1 0.1 0.01 0.001 200 0.0001 B ISM (E ν ) [fm 4 ] 1e-05 1e-06 150 1000 100 srpa0 srpa 10 100 rpa 1 0.1 0.01 50 0.001 0.0001 1e-05 0 1e-06 0 20 40 60 80 100 0 50 100 150 200 250 E ν [MeV] E ν [MeV] 12 12

  15. SRPA Eigenstate Density SRPA vs its diagonal approximation and unperturbed states av18 E100900:: O16 eMax06 aHO01.80 JPC010 BrinkBoeker:: He4 eMax08 aHO01.80 JPC210 1000 SRPA0 SRPA0 HF HF SRPA SRPA 100 P(E ν ) 10 1 0 50 100 150 200 250 0 50 100 150 200 250 300 350 400 E ν [MeV] E ν [MeV] 13 13

  16. SRPA - Diagonal approximation 0.35 SRPA full R IVD (E) [fm 2 /MeV] 0.3 16 O, N max =12 SRPA diag. 0.25 RPA IVD 0.2 0.15 0.1 0.05 0 0 10 20 30 40 50 60 350 SRPA full R ISQ (E) [fm 4 /MeV] 300 48 Ca, N max =8 SRPA diag. 250 RPA ISQ 200 150 100 50 0 0 10 20 30 40 50 60 E [MeV] 14 14

  17. Results on GRs 15

  18. UCOM :: RPA and SRPA 80 400 nMax06 lMax06 SRPA R ISM (E) [fm 4 /MeV] 70 350 RPA 60 300 50 250 16 O 40 Ca 40 200 ISM ISM 30 150 20 100 exp exp 10 50 0 0 0.45 1.2 experiment experiment R IVD (E) [fm 2 /MeV] 0.4 1 0.35 0.3 0.8 0.25 16 O 40 Ca 0.6 0.2 IVD IVD 0.15 0.4 0.1 0.2 0.05 0 0 30 140 R ISQ (E) [fm 4 /MeV] 120 25 100 20 80 16 O 40 Ca 15 60 ISQ ISQ 10 40 exp exp 5 20 0 0 0 10 20 30 40 50 60 0 10 20 30 40 50 60 E [MeV] E [MeV] 16 16

  19. UCOM :: RPA and SRPA 80 400 nMax06 lMax06 SRPA R ISM (E) [fm 4 /MeV] 70 350 RPA 60 300 50 250 16 O 40 Ca 40 200 ISM ISM 30 150 20 100 exp exp 10 50 0 0 0.45 1.2 experiment experiment R IVD (E) [fm 2 /MeV] 0.4 1 0.35 0.3 0.8 0.25 16 O 40 Ca 0.6 0.2 IVD IVD 0.15 0.4 0.1 0.2 0.05 0 0 30 140 R ISQ (E) [fm 4 /MeV] 120 25 4 100 20 exp, ( γ ,Xn) R IVD (E) [fm 2 /MeV] 3.5 80 16 O 40 Ca SRPA 15 3 60 ISQ ISQ RPA 2.5 10 40 exp 90 Zr 2 exp 5 20 IVD 1.5 0 0 1 0 10 20 30 40 50 60 0 10 20 30 40 50 60 0.5 E [MeV] E [MeV] 0 0 10 20 30 40 50 60 E [MeV] 16 16-a

  20. Fragmentation of ph states 0.6 350 SRPA SRPA 300 0.5 250 0.4 200 0.3 150 0.2 100 0.1 50 0 0 strength π 1s 1/2 to π 1d 5/2 0.6 RPA RPA 300 0.5 S ISQ (E) [e 2 fm 4 ] 250 0.4 200 0.3 150 0.2 100 0.1 50 0 0 1.2 HF HF 70 1 60 0.8 50 0.6 40 30 0.4 20 0.2 40 Ca 10 0 0 0 10 20 30 40 50 0 10 20 30 40 50 E[MeV] E[MeV] 17 17

  21. Fragmentation of resonances S ISQ (E) [fm 4 ] . 350 RPA 300 SRPA ISQ 250 40 Ca 200 150 100 50 0 1 0.8 0.6 0.4 0.2 0 10 15 20 25 30 E [MeV] 18 18

  22. Fragmentation of resonances S ISQ (E) [fm 4 ] . 350 RPA 300 SRPA ISQ 250 40 Ca 200 150 100 50 0 1 0.8 0.6 0.4 0.2 0 10 15 20 25 30 ten times as many states E [MeV] below 35 MeV 18 18-a

  23. To consider 19

  24. Spurious states 16 O ISD corrected radial operator r 3 − 5 3 � r 2 � r vs r 3 N max = 12 120 0.36 RPA ISD uncorrected R IVD (E) [fm 2 /MeV] 100 0.3 corrected B ISD (E) [fm 6 ] IVD 80 0.24 60 0.18 40 0.12 20 0.06 0 0 0 10 20 30 40 50 60 70 120 0.36 263 1060 SRPA0 ISD uncorrected R IVD (E) [fm 2 /MeV] 100 0.3 corrected B ISD (E) [fm 6 ] IVD 80 0.24 60 0.18 40 0.12 20 0.06 0 0 0 10 20 30 40 50 60 70 E [MeV] 20 20

  25. Low-lying states SRPA0: convergence and stability of low-lying ISQ states 1 750 RPA :: eMax14 lMax10 aHO01.80 SRPA0 :: lMax=10 lMax= 8 0.8 600 48 Ca, IS 2+ lMax= 6 SRPA0 :: E(2 + 1 ), E(2 + R ISQ (E) [fm 4 /MeV] 2 ) vs nMax 0.6 450 ImE [MeV] 0.4 300 0.2 150 0 0 exp 0 2 4 6 8 10 12 14 ReE [MeV] 21 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend