productively and non productively menger spaces
play

Productively (and non-productively) Menger spaces Piotr Szewczak - PowerPoint PPT Presentation

Productively (and non-productively) Menger spaces Piotr Szewczak Cardinal Stefan Wyszy nski University, Poland, and Bar-Ilan University, Israel joint work with Boaz Tsaban Toposym 2016 Supported by National Science Center Poland


  1. d -unbounded sets A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d A ⊆ [ N ] ∞ is d -unbounded ⇒ A ∪ Fin is Menger Fin Fin Fin Fin . . . A A A A F 1 ∪ { O 1 } ⊆ O 1 F 2 ∪ { O 2 } ⊆ O 2 F 3 ∪ { O 3 } ⊆ O 3

  2. d -unbounded sets A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d A ⊆ [ N ] ∞ is d -unbounded ⇒ A ∪ Fin is Menger Fin . . . A F 1 ∪ { O 1 } ⊆ O 1 F 2 ∪ { O 2 } ⊆ O 2 F 3 ∪ { O 3 } ⊆ O 3

  3. d -unbounded sets A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d A ⊆ [ N ] ∞ is d -unbounded ⇒ A ∪ Fin is Menger Fin . . . A F 1 ∪ { O 1 } ⊆ O 1 F 2 ∪ { O 2 } ⊆ O 2 F 3 ∪ { O 3 } ⊆ O 3

  4. d -unbounded sets A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d A ⊆ [ N ] ∞ is d -unbounded ⇒ A ∪ Fin is Menger Fin . . . A F 1 ∪ { O 1 } ⊆ O 1 F 2 ∪ { O 2 } ⊆ O 2 F 3 ∪ { O 3 } ⊆ O 3 Fin ⊆ � n O n

  5. d -unbounded sets A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d A ⊆ [ N ] ∞ is d -unbounded ⇒ A ∪ Fin is Menger Fin . . . A F 1 ∪ { O 1 } ⊆ O 1 F 2 ∪ { O 2 } ⊆ O 2 F 3 ∪ { O 3 } ⊆ O 3 Fin ⊆ � n O n n O n ⊆ [ N ] ∞ is compact P ( N ) \ �

  6. d -unbounded sets A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d A ⊆ [ N ] ∞ is d -unbounded ⇒ A ∪ Fin is Menger Fin c • • • . . . A F 1 ∪ { O 1 } ⊆ O 1 F 2 ∪ { O 2 } ⊆ O 2 F 3 ∪ { O 3 } ⊆ O 3 Fin ⊆ � n O n n O n ⊆ [ N ] ∞ is compact, ∃ c ∈ [ N ] ∞ P ( N ) \ � P ( N ) \ � n O n ≤ c

  7. d -unbounded sets A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d A ⊆ [ N ] ∞ is d -unbounded ⇒ A ∪ Fin is Menger Fin c • • • . . . • • • A a F 1 ∪ { O 1 } ⊆ O 1 F 2 ∪ { O 2 } ⊆ O 2 F 3 ∪ { O 3 } ⊆ O 3 Fin ⊆ � n O n n O n ⊆ [ N ] ∞ is compact, ∃ c ∈ [ N ] ∞ P ( N ) \ � P ( N ) \ � n O n ≤ c

  8. d -unbounded sets A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d A ⊆ [ N ] ∞ is d -unbounded ⇒ A ∪ Fin is Menger Fin c • • • . . . • • • A a F 1 ∪ { O 1 } ⊆ O 1 F 2 ∪ { O 2 } ⊆ O 2 F 3 ∪ { O 3 } ⊆ O 3 Fin ⊆ � n O n n O n ⊆ [ N ] ∞ is compact, ∃ c ∈ [ N ] ∞ P ( N ) \ � P ( N ) \ � n O n ≤ c | A \ � n O n | < d

  9. d -unbounded sets A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d A ⊆ [ N ] ∞ is d -unbounded ⇒ A ∪ Fin is Menger Fin c • • • . . . • • • A a F 1 ∪ { O 1 } ⊆ O 1 F 2 ∪ { O 2 } ⊆ O 2 F 3 ∪ { O 3 } ⊆ O 3 Fin ⊆ � n O n n O n ⊆ [ N ] ∞ is compact, ∃ c ∈ [ N ] ∞ P ( N ) \ � P ( N ) \ � n O n ≤ c | A \ � n O n | < d ⇒ A \ � n O n is Menger

  10. d -unbounded sets A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d A ⊆ [ N ] ∞ is d -unbounded ⇒ A ∪ Fin is Menger Fin c • • • . . . • • • A a F 1 ∪ { O 1 } ⊆ O 1 F 2 ∪ { O 2 } ⊆ O 2 F 3 ∪ { O 3 } ⊆ O 3 Fin ⊆ � n O n n O n ⊆ [ N ] ∞ is compact, ∃ c ∈ [ N ] ∞ P ( N ) \ � P ( N ) \ � n O n ≤ c | A \ � n O n | < d ⇒ A \ � n O n is Menger

  11. d -unbounded sets A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d A ⊆ [ N ] ∞ is d -unbounded ⇒ A ∪ Fin is Menger Fin c • • • . . . • • • A a F 1 ∪ { O 1 } ⊆ O 1 F 2 ∪ { O 2 } ⊆ O 2 F 3 ∪ { O 3 } ⊆ O 3 Fin ⊆ � n O n n O n ⊆ [ N ] ∞ is compact, ∃ c ∈ [ N ] ∞ P ( N ) \ � P ( N ) \ � n O n ≤ c | A \ � n O n | < d ⇒ A \ � n O n is Menger

  12. d -unbounded sets A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d A ⊆ [ N ] ∞ is d -unbounded ⇒ A ∪ Fin is Menger Fin c • • • . . . • • • A a F 1 ∪ { O 1 } ⊆ O 1 F 2 ∪ { O 2 } ⊆ O 2 F 3 ∪ { O 3 } ⊆ O 3 Fin ⊆ � n O n n O n ⊆ [ N ] ∞ is compact, ∃ c ∈ [ N ] ∞ P ( N ) \ � P ( N ) \ � n O n ≤ c | A \ � n O n | < d ⇒ A \ � n O n is Menger A ∪ Fin is Menger

  13. Main results A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d Theorem (Sz, Tsaban) If X ⊆ [ N ] ∞ contains a d -unbounded set or a cf( d )-unbounded set, then there is a Menger Y ⊆ P ( N ), X × Y is not Menger

  14. Main results A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d Theorem (Sz, Tsaban) If X ⊆ [ N ] ∞ contains a d -unbounded set or a cf( d )-unbounded set, then there is a Menger Y ⊆ P ( N ), X × Y is not Menger Corollary cf( d ) < d ⇒ ∃ Menger X , Y ⊆ P ( N ) , X × Y is not Menger

  15. Main results A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d Theorem (Sz, Tsaban) If X ⊆ [ N ] ∞ contains a d -unbounded set or a cf( d )-unbounded set, then there is a Menger Y ⊆ P ( N ), X × Y is not Menger Corollary cf( d ) < d ⇒ ∃ Menger X , Y ⊆ P ( N ) , X × Y is not Menger ∃ cf( d )-unbounded X ⊆ [ N ] ∞ , | X | = cf( d )

  16. Main results A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d Theorem (Sz, Tsaban) If X ⊆ [ N ] ∞ contains a d -unbounded set or a cf( d )-unbounded set, then there is a Menger Y ⊆ P ( N ), X × Y is not Menger Corollary cf( d ) < d ⇒ ∃ Menger X , Y ⊆ P ( N ) , X × Y is not Menger ∃ cf( d )-unbounded X ⊆ [ N ] ∞ , | X | = cf( d ) | X | = cf( d ) < d ⇒ X is Menger

  17. Main results A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d Theorem (Sz, Tsaban) If X ⊆ [ N ] ∞ contains a d -unbounded set or a cf( d )-unbounded set, then there is a Menger Y ⊆ P ( N ), X × Y is not Menger Corollary cf( d ) < d ⇒ ∃ Menger X , Y ⊆ P ( N ) , X × Y is not Menger ∃ cf( d )-unbounded X ⊆ [ N ] ∞ , | X | = cf( d ) | X | = cf( d ) < d ⇒ X is Menger ∃ Menger Y ⊆ [ N ] ∞ , X × Y is not Menger

  18. Main results A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d

  19. Main results A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d A ⊆ [ N ] ∞ , ∞ is bi- d -unbounded if A and { a c : a ∈ A } are d -unbounded

  20. Main results A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d A ⊆ [ N ] ∞ , ∞ is bi- d -unbounded if A and { a c : a ∈ A } are d -unbounded r : min card of A ⊆ [ N ] ∞ , there is no r ∈ [ N ] ∞ s.t. for all a ∈ A r ∩ a and r \ a are infinite

  21. Main results A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d A ⊆ [ N ] ∞ , ∞ is bi- d -unbounded if A and { a c : a ∈ A } are d -unbounded r : min card of A ⊆ [ N ] ∞ , there is no r ∈ [ N ] ∞ s.t. for all a ∈ A r ∩ a and r \ a are infinite Corollary d ≤ r ⇒ ∃ Menger X , Y ⊆ P ( N ) , X × Y is not Menger

  22. Main results A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d A ⊆ [ N ] ∞ , ∞ is bi- d -unbounded if A and { a c : a ∈ A } are d -unbounded r : min card of A ⊆ [ N ] ∞ , there is no r ∈ [ N ] ∞ s.t. for all a ∈ A r ∩ a and r \ a are infinite Corollary d ≤ r ⇒ ∃ Menger X , Y ⊆ P ( N ) , X × Y is not Menger P ( N ) Fin [ N ] ∞ , ∞ cFin

  23. Main results A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d A ⊆ [ N ] ∞ , ∞ is bi- d -unbounded if A and { a c : a ∈ A } are d -unbounded r : min card of A ⊆ [ N ] ∞ , there is no r ∈ [ N ] ∞ s.t. for all a ∈ A r ∩ a and r \ a are infinite Corollary d ≤ r ⇒ ∃ Menger X , Y ⊆ P ( N ) , X × Y is not Menger P ( N ) d ≤ r ⇔ ∃ bi- d -unbounded A ⊆ [ N ] ∞ , ∞ Fin Fin [ N ] ∞ , ∞ [ N ] ∞ , ∞ cFin

  24. Main results A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d A ⊆ [ N ] ∞ , ∞ is bi- d -unbounded if A and { a c : a ∈ A } are d -unbounded r : min card of A ⊆ [ N ] ∞ , there is no r ∈ [ N ] ∞ s.t. for all a ∈ A r ∩ a and r \ a are infinite Corollary d ≤ r ⇒ ∃ Menger X , Y ⊆ P ( N ) , X × Y is not Menger P ( N ) d ≤ r ⇔ ∃ bi- d -unbounded A ⊆ [ N ] ∞ , ∞ Fin Fin A ∪ Fin is Menger [ N ] ∞ , ∞ [ N ] ∞ , ∞ cFin

  25. Main results A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d A ⊆ [ N ] ∞ , ∞ is bi- d -unbounded if A and { a c : a ∈ A } are d -unbounded r : min card of A ⊆ [ N ] ∞ , there is no r ∈ [ N ] ∞ s.t. for all a ∈ A r ∩ a and r \ a are infinite Corollary d ≤ r ⇒ ∃ Menger X , Y ⊆ P ( N ) , X × Y is not Menger P ( N ) d ≤ r ⇔ ∃ bi- d -unbounded A ⊆ [ N ] ∞ , ∞ Fin Fin A ∪ Fin is Menger τ : P ( N ) → P ( N ), τ ( a ) = a c = a ⊕ N [ N ] ∞ , ∞ [ N ] ∞ , ∞ cFin

  26. Main results A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d A ⊆ [ N ] ∞ , ∞ is bi- d -unbounded if A and { a c : a ∈ A } are d -unbounded r : min card of A ⊆ [ N ] ∞ , there is no r ∈ [ N ] ∞ s.t. for all a ∈ A r ∩ a and r \ a are infinite Corollary d ≤ r ⇒ ∃ Menger X , Y ⊆ P ( N ) , X × Y is not Menger P ( N ) d ≤ r ⇔ ∃ bi- d -unbounded A ⊆ [ N ] ∞ , ∞ Fin Fin A ∪ Fin is Menger τ : P ( N ) → P ( N ), τ ( a ) = a c = a ⊕ N X = τ [ A ∪ Fin ] = { a c : a ∈ A } ∪ cFin ⊆ [ N ] ∞ [ N ] ∞ , ∞ [ N ] ∞ , ∞ cFin

  27. Main results A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d A ⊆ [ N ] ∞ , ∞ is bi- d -unbounded if A and { a c : a ∈ A } are d -unbounded r : min card of A ⊆ [ N ] ∞ , there is no r ∈ [ N ] ∞ s.t. for all a ∈ A r ∩ a and r \ a are infinite Corollary d ≤ r ⇒ ∃ Menger X , Y ⊆ P ( N ) , X × Y is not Menger P ( N ) d ≤ r ⇔ ∃ bi- d -unbounded A ⊆ [ N ] ∞ , ∞ Fin Fin Fin A ∪ Fin is Menger τ : P ( N ) → P ( N ), τ ( a ) = a c = a ⊕ N X = τ [ A ∪ Fin ] = { a c : a ∈ A } ∪ cFin ⊆ [ N ] ∞ [ N ] ∞ , ∞ [ N ] ∞ , ∞ [ N ] ∞ , ∞ cFin cFin

  28. Main results A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d A ⊆ [ N ] ∞ , ∞ is bi- d -unbounded if A and { a c : a ∈ A } are d -unbounded r : min card of A ⊆ [ N ] ∞ , there is no r ∈ [ N ] ∞ s.t. for all a ∈ A r ∩ a and r \ a are infinite Corollary d ≤ r ⇒ ∃ Menger X , Y ⊆ P ( N ) , X × Y is not Menger P ( N ) d ≤ r ⇔ ∃ bi- d -unbounded A ⊆ [ N ] ∞ , ∞ Fin Fin Fin A ∪ Fin is Menger τ : P ( N ) → P ( N ), τ ( a ) = a c = a ⊕ N X = τ [ A ∪ Fin ] = { a c : a ∈ A } ∪ cFin ⊆ [ N ] ∞ [ N ] ∞ , ∞ [ N ] ∞ , ∞ [ N ] ∞ , ∞ d -unbounded { a c : a ∈ A } ⊆ X cFin cFin

  29. Main results A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d A ⊆ [ N ] ∞ , ∞ is bi- d -unbounded if A and { a c : a ∈ A } are d -unbounded r : min card of A ⊆ [ N ] ∞ , there is no r ∈ [ N ] ∞ s.t. for all a ∈ A r ∩ a and r \ a are infinite Corollary d ≤ r ⇒ ∃ Menger X , Y ⊆ P ( N ) , X × Y is not Menger P ( N ) d ≤ r ⇔ ∃ bi- d -unbounded A ⊆ [ N ] ∞ , ∞ Fin Fin Fin A ∪ Fin is Menger τ : P ( N ) → P ( N ), τ ( a ) = a c = a ⊕ N X = τ [ A ∪ Fin ] = { a c : a ∈ A } ∪ cFin ⊆ [ N ] ∞ [ N ] ∞ , ∞ [ N ] ∞ , ∞ [ N ] ∞ , ∞ d -unbounded { a c : a ∈ A } ⊆ X ∃ Menger Y ⊆ P ( N ), X × Y is not Menger cFin cFin

  30. Main results A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d A ⊆ [ N ] ∞ , ∞ is bi- d -unbounded if A and { a c : a ∈ A } are d -unbounded r : min card of A ⊆ [ N ] ∞ , there is no r ∈ [ N ] ∞ s.t. for all a ∈ A r ∩ a and r \ a are infinite Corollary d ≤ r ⇒ ∃ Menger X , Y ⊆ P ( N ) , X × Y is not Menger Productivity of Menger MA Cohen Random Sacks Hechler Laver Mathias Miller

  31. Main results A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d A ⊆ [ N ] ∞ , ∞ is bi- d -unbounded if A and { a c : a ∈ A } are d -unbounded r : min card of A ⊆ [ N ] ∞ , there is no r ∈ [ N ] ∞ s.t. for all a ∈ A r ∩ a and r \ a are infinite Corollary d ≤ r ⇒ ∃ Menger X , Y ⊆ P ( N ) , X × Y is not Menger Productivity of Menger MA Cohen Random Sacks Hechler Laver Mathias Miller

  32. Main results A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d A ⊆ [ N ] ∞ , ∞ is bi- d -unbounded if A and { a c : a ∈ A } are d -unbounded r : min card of A ⊆ [ N ] ∞ , there is no r ∈ [ N ] ∞ s.t. for all a ∈ A r ∩ a and r \ a are infinite Corollary d ≤ r ⇒ ∃ Menger X , Y ⊆ P ( N ) , X × Y is not Menger Productivity of Menger MA Cohen Random Sacks Hechler Laver Mathias Miller ?

  33. Main results A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d A ⊆ [ N ] ∞ , ∞ is bi- d -unbounded if A and { a c : a ∈ A } are d -unbounded r : min card of A ⊆ [ N ] ∞ , there is no r ∈ [ N ] ∞ s.t. for all a ∈ A r ∩ a and r \ a are infinite Corollary d ≤ r ⇒ ∃ Menger X , Y ⊆ P ( N ) , X × Y is not Menger Productivity of Menger MA Cohen Random Sacks Hechler Laver Mathias Miller ? Theorem ? (Zdomskyy) In the Miller model Menger is productive

  34. The Hurewicz property Hurewicz’s property: for every sequence of open covers O 1 , O 2 , . . . of X there are finite F 1 ⊆ O 1 , F 2 ⊆ O 2 , . . . such that for each x ∈ X , the set ∈ � F n } is finite { n ∈ N : x /

  35. The Hurewicz property Hurewicz’s property: for every sequence of open covers O 1 , O 2 , . . . of X there are finite F 1 ⊆ O 1 , F 2 ⊆ O 2 , . . . such that for each x ∈ X , the set ∈ � F n } is finite { n ∈ N : x / X X F 1 ⊆ O 1

  36. The Hurewicz property Hurewicz’s property: for every sequence of open covers O 1 , O 2 , . . . of X there are finite F 1 ⊆ O 1 , F 2 ⊆ O 2 , . . . such that for each x ∈ X , the set ∈ � F n } is finite { n ∈ N : x / X X X X . . . F 1 ⊆ O 1

  37. The Hurewicz property Hurewicz’s property: for every sequence of open covers O 1 , O 2 , . . . of X there are finite F 1 ⊆ O 1 , F 2 ⊆ O 2 , . . . such that for each x ∈ X , the set ∈ � F n } is finite { n ∈ N : x / X X X X . . . F 1 ⊆ O 1

  38. The Hurewicz property Hurewicz’s property: for every sequence of open covers O 1 , O 2 , . . . of X there are finite F 1 ⊆ O 1 , F 2 ⊆ O 2 , . . . such that for each x ∈ X , the set ∈ � F n } is finite { n ∈ N : x / X X X X . . . F 1 ⊆ O 1 F 2 ⊆ O 2 F 3 ⊆ O 3

  39. The Hurewicz property Hurewicz’s property: for every sequence of open covers O 1 , O 2 , . . . of X there are finite F 1 ⊆ O 1 , F 2 ⊆ O 2 , . . . such that for each x ∈ X , the set ∈ � F n } is finite { n ∈ N : x / X X X X . . . F 1 ⊆ O 1 F 2 ⊆ O 2 F 3 ⊆ O 3

  40. The Hurewicz property Hurewicz’s property: for every sequence of open covers O 1 , O 2 , . . . of X there are finite F 1 ⊆ O 1 , F 2 ⊆ O 2 , . . . such that for each x ∈ X , the set ∈ � F n } is finite { n ∈ N : x / X X X X . . . F 1 ⊆ O 1 F 2 ⊆ O 2 F 3 ⊆ O 3

  41. The Hurewicz property Hurewicz’s property: for every sequence of open covers O 1 , O 2 , . . . of X there are finite F 1 ⊆ O 1 , F 2 ⊆ O 2 , . . . such that for each x ∈ X , the set ∈ � F n } is finite { n ∈ N : x / X X X X . . . • x F 1 ⊆ O 1 F 2 ⊆ O 2 F 3 ⊆ O 3

  42. The Hurewicz property Hurewicz’s property: for every sequence of open covers O 1 , O 2 , . . . of X there are finite F 1 ⊆ O 1 , F 2 ⊆ O 2 , . . . such that for each x ∈ X , the set ∈ � F n } is finite { n ∈ N : x / X X X X . . . • x F 1 ⊆ O 1 F 2 ⊆ O 2 F 3 ⊆ O 3 Hurewicz ⇒ Menger

  43. The Hurewicz property Hurewicz’s property: for every sequence of open covers O 1 , O 2 , . . . of X there are finite F 1 ⊆ O 1 , F 2 ⊆ O 2 , . . . such that for each x ∈ X , the set ∈ � F n } is finite { n ∈ N : x / X X X X . . . • x F 1 ⊆ O 1 F 2 ⊆ O 2 F 3 ⊆ O 3 σ -compact ⇒ Hurewicz ⇒ Menger

  44. The Hurewicz property Hurewicz’s property: for every sequence of open covers O 1 , O 2 , . . . of X there are finite F 1 ⊆ O 1 , F 2 ⊆ O 2 , . . . such that for each x ∈ X , the set ∈ � F n } is finite { n ∈ N : x / X X X X . . . • x F 1 ⊆ O 1 F 2 ⊆ O 2 F 3 ⊆ O 3 σ -compact ⇒ Hurewicz ⇒ Menger Aurichi, Tall ( d = ℵ 1 ): metrizable productively Lindel¨ of ⇒ Hurewicz

  45. The Hurewicz property Hurewicz’s property: for every sequence of open covers O 1 , O 2 , . . . of X there are finite F 1 ⊆ O 1 , F 2 ⊆ O 2 , . . . such that for each x ∈ X , the set ∈ � F n } is finite { n ∈ N : x / X X X X . . . • x F 1 ⊆ O 1 F 2 ⊆ O 2 F 3 ⊆ O 3 σ -compact ⇒ Hurewicz ⇒ Menger Aurichi, Tall ( d = ℵ 1 ): metrizable productively Lindel¨ of ⇒ Hurewicz Sz (ZFC): separable productively paracompact ⇒ Hurewicz

  46. Hurewicz meets combinatorics • y • x ≤ ∗ y if x ( n ) ≤ y ( n ) for almost all n • • • • • • • • • x • • • • •

  47. Hurewicz meets combinatorics • • • y x ≤ ∗ y if x ( n ) ≤ y ( n ) for almost all n • • x • • y ≤ ∞ x if x �≤ ∗ y • • • • • • • • •

  48. Hurewicz meets combinatorics • c • x ≤ ∗ y if x ( n ) ≤ y ( n ) for almost all n • • • y ≤ ∞ x if x �≤ ∗ y • • • y Y is bounded if ∃ c ∈ [ N ] ∞ ∀ y ∈ Y y ≤ ∗ c • • • • • • • •

  49. Hurewicz meets combinatorics • c • x ≤ ∗ y if x ( n ) ≤ y ( n ) for almost all n • • • y ≤ ∞ x if x �≤ ∗ y • • • y Y is bounded if ∃ c ∈ [ N ] ∞ ∀ y ∈ Y y ≤ ∗ c • • • • • b : minimal cardinality of an unbounded set • • •

  50. Hurewicz meets combinatorics • c • x ≤ ∗ y if x ( n ) ≤ y ( n ) for almost all n • • • y ≤ ∞ x if x �≤ ∗ y • • • y Y is bounded if ∃ c ∈ [ N ] ∞ ∀ y ∈ Y y ≤ ∗ c • • • • • b : minimal cardinality of an unbounded set • • • Theorem (Hurewicz) Assume that X is Lindel¨ of and zero-dimensional X is Hurewicz ⇔ continuous image of X into [ N ] ∞ is unbounded

  51. Hurewicz meets combinatorics • c • x ≤ ∗ y if x ( n ) ≤ y ( n ) for almost all n • • • y ≤ ∞ x if x �≤ ∗ y • • • y Y is bounded if ∃ c ∈ [ N ] ∞ ∀ y ∈ Y y ≤ ∗ c • • • • • b : minimal cardinality of an unbounded set • • • Theorem (Hurewicz) Assume that X is Lindel¨ of and zero-dimensional X is Hurewicz ⇔ continuous image of X into [ N ] ∞ is unbounded

  52. Hurewicz meets combinatorics • c • x ≤ ∗ y if x ( n ) ≤ y ( n ) for almost all n • • • y ≤ ∞ x if x �≤ ∗ y • • • y Y is bounded if ∃ c ∈ [ N ] ∞ ∀ y ∈ Y y ≤ ∗ c • • • • • b : minimal cardinality of an unbounded set • • • Theorem (Hurewicz) Assume that X is Lindel¨ of and zero-dimensional X is Hurewicz ⇔ continuous image of X into [ N ] ∞ is unbounded A Lindel¨ of X with | X | < b is Hurewicz An unbounded X ⊆ [ N ] ∞ is not Hurewicz

  53. Main theorem again A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d Theorem (Sz, Tsaban) If X ⊆ [ N ] ∞ contains a d -unbounded set or a cf( d )-unbounded set, then there is a Menger Y ⊆ P ( N ), X × Y is not Menger

  54. Main theorem again A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d Theorem (Sz, Tsaban) If X ⊆ [ N ] ∞ contains a d -unbounded set or a cf( d )-unbounded set, then there is a Menger Y ⊆ P ( N ), X × Y is not Menger Y = A ∪ Fin , A is d -unbounded Fin c • • • • • • A a

  55. Main theorem again A ⊆ [ N ] ∞ is d -unbounded if | A | ≥ d and ∀ c ∈ [ N ] ∞ |{ a ∈ A : a ≤ c }| < d Theorem (Sz, Tsaban) If X ⊆ [ N ] ∞ contains a d -unbounded set or a cf( d )-unbounded set, then there is a Menger Y ⊆ P ( N ), X × Y is not Menger Y = A ∪ Fin , A is d -unbounded Fin c • • • • • • A a Tsaban, Zdomskyy: H is Hurewicz and hereditarily Lindel¨ of ⇒ H × Y is Menger

  56. Productivity of Menger and Hurewicz X is productively Menger if for each Menger M , X × M is Menger

  57. Productivity of Menger and Hurewicz X is productively Menger if for each Menger M , X × M is Menger Theorem (Sz, Tsaban) b = d , hereditarily Lindel¨ of spaces productively Menger ⇒ productively Hurewicz

  58. Productivity of Menger and Hurewicz X is productively Menger if for each Menger M , X × M is Menger Theorem (Sz, Tsaban) b = d , hereditarily Lindel¨ of spaces productively Menger ⇒ productively Hurewicz Asm X prod Menger, X × H not Hurewicz

  59. Productivity of Menger and Hurewicz X is productively Menger if for each Menger M , X × M is Menger Theorem (Sz, Tsaban) b = d , hereditarily Lindel¨ of spaces productively Menger ⇒ productively Hurewicz Asm X prod Menger, X × H not Hurewicz X × H → Y ⊆ [ N ] ∞ unbounded

  60. Productivity of Menger and Hurewicz X is productively Menger if for each Menger M , X × M is Menger Theorem (Sz, Tsaban) b = d , hereditarily Lindel¨ of spaces productively Menger ⇒ productively Hurewicz Asm X prod Menger, X × H not Hurewicz • • X × H → Y ⊆ [ N ] ∞ unbounded • s α ( b = d ) • • • ∃ dominating { s α : α < b } , s β ≤ ∗ s α , β ≤ α • • • • s β • • • • • •

  61. Productivity of Menger and Hurewicz X is productively Menger if for each Menger M , X × M is Menger Theorem (Sz, Tsaban) b = d , hereditarily Lindel¨ of spaces productively Menger ⇒ productively Hurewicz Asm X prod Menger, X × H not Hurewicz • • X × H → Y ⊆ [ N ] ∞ unbounded s α ( b = d ) • • ∃ dominating { s α : α < b } , s β ≤ ∗ s α , β ≤ α s α ≤ ∞ y α ∈ Y • • • •

  62. Productivity of Menger and Hurewicz X is productively Menger if for each Menger M , X × M is Menger Theorem (Sz, Tsaban) b = d , hereditarily Lindel¨ of spaces productively Menger ⇒ productively Hurewicz • Asm X prod Menger, X × H not Hurewicz • • X × H → Y ⊆ [ N ] ∞ unbounded • • s α ( b = d ) • • ∃ dominating { s α : α < b } , s β ≤ ∗ s α , β ≤ α • • s α ≤ ∞ y α ∈ Y y α • • • • • • •

  63. Productivity of Menger and Hurewicz X is productively Menger if for each Menger M , X × M is Menger Theorem (Sz, Tsaban) b = d , hereditarily Lindel¨ of spaces productively Menger ⇒ productively Hurewicz • Asm X prod Menger, X × H not Hurewicz • • X × H → Y ⊆ [ N ] ∞ unbounded • • s α ( b = d ) • • ∃ dominating { s α : α < b } , s β ≤ ∗ s α , β ≤ α • • s α ≤ ∞ y α ∈ Y y α • • • • d -unbounded { y α : α < b } ⊆ Y • • •

  64. Productivity of Menger and Hurewicz X is productively Menger if for each Menger M , X × M is Menger Theorem (Sz, Tsaban) b = d , hereditarily Lindel¨ of spaces productively Menger ⇒ productively Hurewicz • Asm X prod Menger, X × H not Hurewicz • • X × H → Y ⊆ [ N ] ∞ unbounded • • s α ( b = d ) • • ∃ dominating { s α : α < b } , s β ≤ ∗ s α , β ≤ α • • s α ≤ ∞ y α ∈ Y y α • • • • d -unbounded { y α : α < b } ⊆ Y • • ∃ Menger M ⊆ P ( N ), Y × M not Menger •

  65. Productivity of Menger and Hurewicz X is productively Menger if for each Menger M , X × M is Menger Theorem (Sz, Tsaban) b = d , hereditarily Lindel¨ of spaces productively Menger ⇒ productively Hurewicz • Asm X prod Menger, X × H not Hurewicz • • X × H → Y ⊆ [ N ] ∞ unbounded • • s α ( b = d ) • • ∃ dominating { s α : α < b } , s β ≤ ∗ s α , β ≤ α • • s α ≤ ∞ y α ∈ Y y α • • • • d -unbounded { y α : α < b } ⊆ Y • • ∃ Menger M ⊆ P ( N ), Y × M not Menger • ( X × H ) × M → Y × M , ( X × H ) × M not Menger

  66. Productivity of Menger and Hurewicz X is productively Menger if for each Menger M , X × M is Menger Theorem (Sz, Tsaban) b = d , hereditarily Lindel¨ of spaces productively Menger ⇒ productively Hurewicz • Asm X prod Menger, X × H not Hurewicz • • X × H → Y ⊆ [ N ] ∞ unbounded • • s α ( b = d ) • • ∃ dominating { s α : α < b } , s β ≤ ∗ s α , β ≤ α • • s α ≤ ∞ y α ∈ Y y α • • • • d -unbounded { y α : α < b } ⊆ Y • • ∃ Menger M ⊆ P ( N ), Y × M not Menger • ( X × H ) × M → Y × M , ( X × H ) × M not Menger H × M is Menger, X × ( H × M ) is Menger

  67. Productivity of Menger and Hurewicz X is productively Menger if for each Menger M , X × M is Menger Theorem (Sz, Tsaban) b = d , hereditarily Lindel¨ of spaces productively Menger ⇒ productively Hurewicz • Asm X prod Menger, X × H not Hurewicz • • X × H → Y ⊆ [ N ] ∞ unbounded • • s α ( b = d ) • • ∃ dominating { s α : α < b } , s β ≤ ∗ s α , β ≤ α • • s α ≤ ∞ y α ∈ Y y α • • • • d -unbounded { y α : α < b } ⊆ Y • • ∃ Menger M ⊆ P ( N ), Y × M not Menger • ( X × H ) × M → Y × M , ( X × H ) × M not Menger H × M is Menger, X × ( H × M ) is Menger

  68. Productivity of Menger and Hurewicz X is productively Menger if for each Menger M , X × M is Menger Theorem (Sz, Tsaban) b = d , hereditarily Lindel¨ of spaces productively Menger ⇒ productively Hurewicz What about general spaces?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend