probing for anomalous couplings in production and decay 4
play

Probing for anomalous couplings in production and decay 4 at CMS - PowerPoint PPT Presentation

1 Animated gifs on some slides. See ppt version or separate indico attachment. Probing for anomalous couplings in production and decay 4 at CMS Heshy Roskes (Johns Hopkins University) for the CMS collaboration The 26th


  1. 1 Animated gifs on some slides. See ppt version or separate indico attachment. Probing for anomalous ๐ผ๐‘Š๐‘Š couplings in production and decay ๐ผ โ†’ 4โ„“ at CMS Heshy Roskes (Johns Hopkins University) for the CMS collaboration The 26th International Workshop on Weak Interactions and Neutrinos (WIN2017) UC Irvine June 20, 2017

  2. 2 Anomalous couplings โ€ข Search for anomalous ๐ผ๐‘Š๐‘Š couplings in production and decay in the ๐ผ โ†’ 4๐‘š channel โ€ข Kinematics of decay โ€ข New: kinematics of jets from VBF and ๐‘Š๐ผ production โ€ข Use matrix element (MELA) discriminants โ€ข optimally select VBF and ๐‘Š๐ผ events โ€ข optimally separate different contributions to the amplitude โ€ข Combine with Run 1 CMS analysis

  3. 3 ๐ผ 125 โ†’ 4โ„“ References: Run 1: โ€ข CMS-HIG-14-018 spin anomalous couplings Run 2: โ€ข CMS-PAS-HIG-16-041 properties โ€ข CMS-PAS-HIG-17-011 anomalous couplings โ€ข What is it? โ€ข How does it interact with other particles?

  4. 4 CMS&ATLAS results โ€ข Run 1: exclude spin 1 and 2 โ€ข Set limits on spin 0 anomalous couplings CMS ATLAS โ€ข โ€ข Study of the mass and spin-parity of the Higgs Evidence for the spin-0 nature of the Higgs boson candidate via its decays to Z boson pairs boson using ATLAS data ATLAS arXiv:1307.1432 CMS-HIG-12-041, arXiv:1212.6639 โ€ข Study of the spin and parity of the Higgs boson โ€ข Measurement of the properties of a Higgs in diboson decays with the ATLAS detector boson in the four-lepton final state ATLAS arXiv:1506.05669 arXiv:1312.5353, CMS-HIG-13-002 โ€ข โ€ข Test of CP Invariance in vector-boson fusion Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton production of the Higgs boson using the collisions at 7 and 8 TeV arXiv:1411.3441, CMS- Optimal Observable method in the ditau decay HIG-14-018 channel with the ATLAS detector ATLAS arXiv:1602.04516 โ€ข Limits on the Higgs boson lifetime and width ๐‘” from its decay to four charged leptons ฮ›๐‘… arXiv:1507.06656, CMS-HIG-14-036 VV Production (decay to ๐‘” าง ๐‘” ) โ€ข Combined search for anomalous pseudoscalar HVV couplings in VH production and H to VV decay arXiv:1602.04305, CMS-HIG-14-035 โ€ข โ€ข Measurement of inclusive and differential cross Measurements of properties of the Higgs boson sections in the H โ†’ ZZ โˆ— โ†’ 4l decay channel at and search for an additional resonance in the four- lepton final state at โˆšs = 13 TeV, CMS-PAS- 13 TeV with the ATLAS detector ATLAS-CONF- HIG-16-033 2017-032 โ€ข Run 2 results Constraints on anomalous Higgs boson couplings in production and decay Hโ†’4โ„“, CMS - PAS-HIG-17-011 This analysis

  5. 5 Kinematics ๐ผ โ†’ ๐‘Ž๐‘Ž โ†’ 4โ„“ ๐‘Š๐ผ VBF โ€ข For a given ๐‘› 4โ„“ , four-fermion system in production or decay is defined by: โ€ข 5 angles 2 of difermion systems โ€ข Two ๐‘Ÿ ๐‘Š ๐‘— โ€ข For the production+decay: two ๐ผ๐‘Š๐‘Š vertices โ€ข 13 independent observables remain

  6. 6 HVV amplitude 2 +๐‘Ÿ ๐‘Š2 2 ๐‘Ÿ ๐‘Š1 ๐‘Š๐‘Š + 2 ๐œ— ๐‘Š โˆ— ๐œ— ๐‘Š โˆ— + โ€ข ๐ต ๐ผ๐‘Š๐‘Š ~ ๐‘ 1 ๐‘› ๐‘Š ๐‘Š๐‘Š 2 1 1 2 ฮ› 1 โˆ— 1 ๐‘” โˆ— 2 ,๐œˆ๐œ‰ + ๐‘ 3 โˆ— 1 แˆš ๐‘Š๐‘Š ๐‘” ๐‘Š๐‘Š ๐‘” ๐‘” โˆ— 2 ,๐œˆ๐œ‰ ๐‘ 2 ๐œˆ๐œ‰ ๐œˆ๐œ‰ โ€ข ๐‘Š๐‘Š = ๐‘Ž๐‘Ž, ๐‘‹๐‘‹, ๐‘Ž๐›ฟ, ๐›ฟ๐›ฟ ๐‘Ž๐‘Ž = ๐‘ 1 ๐‘‹๐‘‹ = 2 , others = 0 โ€ข SM, tree level: ๐‘ 1 ๐‘Ž๐‘Ž = ๐‘ ๐‘— ๐‘‹๐‘‹ , call it โ€œ ๐‘ ๐‘— โ€ โ€ข Assume ๐‘ ๐‘— โ€ข Assume no ๐‘Ÿ 2 cutoff for anomalous couplings ๐‘Ž๐›ฟ โ€ข Measure ๐‘ 2 , ๐‘ 3 , ฮ› 1 , ฮ› 1 ๐‘Ž๐›ฟ,๐›ฟ๐›ฟ are already constrained from onshell photons โ€ข ๐‘ 2,3 ๐‘ ๐‘— 2 ๐œ ๐‘— โ€ข Parameterize as fractional cross section ๐‘” ๐‘๐‘— = 2 ๐œ ๐‘˜ ฯƒ ๐‘˜ ๐‘ ๐‘˜ ๐‘ ๐‘— and relative phase ๐œš ๐‘๐‘— = arg ๐‘ 1

  7. 7 Tools โ€ข JHUGen โ€ข Generate samples with arbitrary couplings โ€ข ฮค ฮค ๐‘•๐‘• ๐‘Ÿเดค ๐‘Ÿ โ†’ ๐‘Œ โ†’ ๐‘Ž๐‘Ž ๐‘‹๐‘‹ โ†’ 4๐‘” for ๐‘Œ spin 0, 1, 2 โ€ข VBF, ๐‘Š๐ผ , ๐‘•๐‘•๐ผ with 0, 1, or 2 QCD jets, ๐‘ข๐‘ข๐ผ , ๐‘๐‘๐ผ , ๐‘ข๐‘Ÿ๐ผ โ€ข MELA โ€” Matrix Element Likelihood Approach โ€ข Matrix element calculations โ€ข JHUGen for signal โ€ข MCFM for background โ€ข Calculate discriminants to distinguish hypotheses โ€ข Reweight generated samples to different hypotheses

  8. 8 Contributions โ€ข Background โ€ข ฮค ๐‘Ÿเดค ๐‘Ÿ ๐‘•๐‘• โ†’ ๐‘Ž๐‘Ž โ€ข ๐‘Ž + ๐‘Œ โ€ข Signal โ€ข ๐‘•๐‘•๐ผ , VBF, VH, ๐‘ข๐‘ข๐ผ โ€ข ๐ผ๐‘Š๐‘Š couplings in decay โ€ข ๐ผ๐‘Š๐‘Š couplings in production and decay โ€ข SM, anomalous, and interference contributions โ€ข Want to isolate each component to constrain couplings โ€ข 7 or 13 kinematic observables ( +๐‘› 4โ„“ for bkg separation) โ€ข too many to use them all

  9. 9 Discriminants โ€ข Two basic types of discriminants: ๐‘ž ๐‘ก๐‘—๐‘• โ€ข ๐ธ ๐‘๐‘š๐‘ข = ๐‘ž ๐‘ก๐‘—๐‘• +๐‘ž ๐‘๐‘š๐‘ข โ€ข Optimal to distinguish pure SM signal from alternate hypothesis โ€ข Alternate hypothesis could be background, another coupling model, or another signal production mode ๐‘ž ๐‘—๐‘œ๐‘ข โ€ข ๐ธ ๐‘—๐‘œ๐‘ข = ๐‘ž ๐‘ก๐‘—๐‘• +๐‘ž ๐‘๐‘š๐‘ข โ€ข Together with ๐ธ ๐‘๐‘š๐‘ข , optimal to also isolate the interference contribution โ€ข ๐‘ž ๐‘ก๐‘—๐‘• , ๐‘ž ๐‘๐‘š๐‘ข , ๐‘ž ๐‘—๐‘œ๐‘ข are calculated through MELA using matrix element probabilities

  10. 10 Discriminants 1 ๐‘Š๐ถ๐บ ๐‘Ž๐ผ ๐‘‹๐ผ = ๐‘ž ฮค ฮค ฮค ๐‘Š๐ถ๐บ ๐‘Ž๐ผโˆ•๐‘‹๐ผ โ€ข ๐ธ 2๐‘˜๐‘“๐‘ข ๐‘ž ๐‘Š๐ถ๐บ ๐‘Ž๐ผโˆ•๐‘‹๐ผ +๐‘ž ๐ผ๐‘˜๐‘˜ ฮค โ€ข Separate associated production from QCD jets ๐‘Š๐ถ๐บ,๐‘‡๐‘ ๐ธ 2๐‘˜๐‘“๐‘ข โ€ข VBF-jet category: ๐‘Š๐ถ๐บ,๐‘‡๐‘ > 0.5 or ๐ธ 2๐‘˜๐‘“๐‘ข ๐‘Š๐ถ๐บ,๐ถ๐‘‡๐‘ > 0.5 โ€ข ๐ธ 2๐‘˜๐‘“๐‘ข โ€ข VH-jet category: ๐‘Ž๐ผ,๐‘‡๐‘ > 0.5 or ๐ธ 2๐‘˜๐‘“๐‘ข ๐‘Ž๐ผ,๐ถ๐‘‡๐‘ > 0.5 โ€ข ๐ธ 2๐‘˜๐‘“๐‘ข ๐‘‹๐ผ,๐‘‡๐‘ > 0.5 or ๐ธ 2๐‘˜๐‘“๐‘ข ๐‘‹๐ผ,๐ถ๐‘‡๐‘ > 0.5 or ๐ธ 2๐‘˜๐‘“๐‘ข โ€ข Untagged category: โ€ข Everything else ๐‘Ž๐ผ,๐‘‡๐‘ , ๐ธ 2๐‘˜๐‘“๐‘ข ๐‘‹๐ผ,๐‘‡๐‘ max ๐ธ 2๐‘˜๐‘“๐‘ข ๐‘‡๐‘ and ๐ธ 2๐‘˜๐‘“๐‘ข ๐ถ๐‘‡๐‘ to get optimal separation โ€ข Use ๐ธ 2๐‘˜๐‘“๐‘ข for both extreme hypotheses

  11. 11 Discriminants 2 โ€ข Use 3D templates to parameterize the signal and background for each category โ€ข ๐‘ฌ ๐’„๐’๐’‰ , ๐ธ ๐‘๐‘— , ๐ธ ๐‘—๐‘œ๐‘ข ๐‘ž ๐‘ก๐‘—๐‘• โ€ข ๐ธ ๐‘๐‘™๐‘• = ๐‘ž ๐‘ก๐‘—๐‘• +๐‘ž ๐‘๐‘™๐‘• โ€ข Used for all 3 categories โ€ข ๐‘› 4โ„“ + decay kinematics 105 GeV < ๐‘› 4โ„“ < 140 GeV

  12. 12 Discriminants 3 โ€ข ๐ธ ๐‘๐‘™๐‘• , ๐‘ฌ ๐’ƒ๐’‹ , ๐ธ ๐‘—๐‘œ๐‘ข ๐‘ž ๐‘ก๐‘—๐‘• โ€ข ๐ธ ๐‘๐‘— = ๐‘ž ๐‘ก๐‘—๐‘• +๐‘ž ๐‘๐‘— โ€ข Tagged categories: use production ร— decay probabilities โ€ข Untagged: use decay probabilities only โ€ข Example: ๐ธ 0โˆ’ for the ๐‘” ๐‘3 analysis

  13. 13 Discriminants 4 โ€ข ๐ธ ๐‘๐‘™๐‘• , ๐ธ ๐‘๐‘— , ๐‘ฌ ๐’‹๐’๐’– ๐‘ž ๐‘—๐‘œ๐‘ข โ€ข ๐ธ ๐‘—๐‘œ๐‘ข = ๐‘ž ๐‘ก๐‘—๐‘• +๐‘ž ๐‘๐‘š๐‘ข โ€ข Tagged categories: use production probabilities โ€ข Untagged: use decay probabilities

  14. 14 ๐‘ ๐‘— 2 ๐œ ๐‘— ๐‘” ๐‘๐‘— = ๐‘ 1 2 ๐œ 1 + ๐‘ ๐‘— 2 ๐œ ๐‘— + โ‹ฏ Likelihood fit โ€ข Assume real couplings, ๐œš ๐‘๐‘— = 0 or ๐œŒ โ€ข ggH, only one HVV vertex: ๐‘ ๐‘— ๐‘” ๐œ 1 ๐‘๐‘— = ๐‘ 1 ๐‘” ๐œ ๐‘— ๐‘1 โ€ข ๐‘ž ๐‘” ๐‘๐‘— , ฮฉ ~ ๐‘ 1 ๐ต 1 + ๐‘ ๐‘— ๐ต ๐‘— 2 2 โˆผ ๐‘ˆ 0 ฮฉ + ๐‘ ๐‘— 1 ฮฉ + ๐‘ ๐‘— cos ๐œš ๐‘๐‘— ๐‘ˆ ๐‘ˆ 2 ฮฉ ๐‘ 1 ๐‘ 1 โ€ข VBF or VH, two HVV vertices โ€ข ๐‘ž ๐‘” ๐‘๐‘— , ฮฉ 2 ๐‘ž๐‘ ๐‘๐‘’ + ๐‘ ๐‘— ๐ต ๐‘— ๐‘’๐‘“๐‘‘ + ๐‘ ๐‘— ๐ต ๐‘— ๐‘ž๐‘ ๐‘๐‘’ )(๐‘ 1 ๐ต 1 ๐‘’๐‘“๐‘‘ ) ~ (๐‘ 1 ๐ต 1 4 ๐‘˜ ๐‘ ๐‘— cos ๐‘˜ ๐œš ๐‘๐‘— ๐‘ˆ โˆผ เท ๐‘˜ ฮฉ ๐‘ 1 ๐‘˜=0

  15. 15 Signal strength โ€ข Want to decouple ratios of couplings ๐‘” ๐‘๐‘— from the signal strengths ๐œˆ ๐‘— โ€ข Allow signal strength for production via fermion couplings ๐œˆ ๐‘” and boson couplings ๐œˆ ๐‘Š to float independently โ€ข Constrained by category distribution of events

  16. 16 Event distribution โ€ข First number is for SM, (second) is for ๐‘” ๐‘3 = 1 โ€ข Use categorization for ๐‘” ๐‘3 analysis, others are a bit different โ€ข (In particular, fewer observed events in VBF-jets)

  17. 17 Results โ€ข Scans for each parameter โ€ข 13 TeV only, and combination with Run 1 result

  18. 18 More details: ๐‘” ๐‘3 โ€ข 1D projections help to explain โ€ข Small excess of events at smaller ๐‘’๐‘“๐‘‘ values of ๐ธ 0โˆ’ โ€ข Minimum away from 0 โ€ข ๐ธ ๐ท๐‘„ has small excess on the right โ€ข +0.3 is favored over -0.3 โ€ข Combine with Run 1: minimum at ๐‘” ๐‘3 = 0

  19. 19 More details: ๐‘” ๐‘3 โ€ข VBF and VH are sensitive to very small ๐‘” ๐‘3 โ€ข Once ๐‘” ๐‘3 โ‰ณ 0.01 , more favorable to set ๐œˆ ๐‘Š โ†’ 0

  20. 20 ๐œˆ ๐‘Š ๐œˆ ๐‘Š = 0.03 ๐œˆ ๐‘Š = 0.76 โ€ข Observe fewer VBF and VH events than expected โ€ข Best fit ๐œˆ ๐‘Š for ๐‘” ๐‘๐‘— = 0 is < 1 ๐œˆ ๐‘Š = 0.24 ๐œˆ ๐‘Š = 0.20 (values on plots) ๏ƒ˜ Narrow minima not as deep as expected

  21. 21 More details: ๐‘” ๐‘3 โ€ข Animations: each frame uses the best fit ๐œˆ ๐‘Š and ๐œˆ ๐‘” ๐‘Š๐ถ๐บโˆ•๐‘Š๐ผ are the cross section โ€ข ๐‘” ๐‘3 fractions for those processes โ€ข Watch what happens when ๐‘” ๐‘3 โ‰ฒ 0.01 See ppt version for animations or separate indico attachment

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend