probability and statistics
play

Probability and Statistics for Computer Science Principal - PowerPoint PPT Presentation

Probability and Statistics for Computer Science Principal Component Analysis --- Exploring the data in less dimensions Credit: wikipedia Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 10.27.2020 Last time Review of Bayesian inference


  1. Probability and Statistics ì for Computer Science Principal Component Analysis --- Exploring the data in less dimensions Credit: wikipedia Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 10.27.2020

  2. Last time � Review of Bayesian inference � Visualizing high dimensional data & Summarizing data � The covariance matrix

  3. Objectives gpr.in#*m- Analysis Two applications :O Dimension reduction ⑤ Compression , Reconstruction Ear :* t those in data see ! directions !

  4. Examples: Immune Cell Data -38816 � There are 38816 white N - blood immune cells from DX N T cells a mouse sample T � Each immune cell has 40+ features/ measurements ↳ components B cells � Four features are used subset choose - as illustraSon. d=4 � There are at least 3 cell types involved Natural killer cells

  5. Scatter matrix of Immune Cells � There are 38816 white blood immune cells from a mouse sample � Each immune cell has 40+ features/ components � Four features are used for the illustraSon. Dark red : T cells � There are at least 3 cell Brown: B cells types involved Blue: NK cells Cyan: other small populaSon

  6. ' Data PCA of Immune Cells > res1 Eigenvalues $values [1] 4.7642829 2.1486896 1.3730662 0.4968255 T - cell Eigenvectors $vectors NK - cell [,1] [,2] [,3] [,4] UL [1,] 0.2476698 0.00801294 -0.6822740 0.6878210 81 [2,] 0.3389872 -0.72010997 -0.3691532 § -0.4798492 [3,] -0.8298232 0.01550840 -0.5156117 if B-cell -0.2128324 & word : notes [4,] 0.3676152 0.69364033 -0.3638306 are along -0.5013477 d - ④ eigenvector

  7. Properties of Covariance matrix { x } Covmat( ) 7×7 cov ( { x } ; j, k ) = cov ( { x } ; k, j ) ' ' ' s ) [ 1 2 3 4 5 6 7 � The covariance " " 1 * * * * * * * matrix is symmetric ! 2 * * * * * * * � And it’s posi6ve 3 * * * * * * * semi-definite , that is 4 * * * * * * * in all λ i ≥ 0 5 * * * * * * * 6 * * * * * * * � Covariance matrix is 7 * * * * * * * diagonalizable as

  8. Properties of Covariance matrix { x } Covmat( ) � If we define x c as the 7×7 CoV C ' , 2 ) mean centered oil 1 2 3 4 5 6 7 matrix for dataset {x} 1 * * * * * * * Z 2 * * * * * * * Gz Covmat ( { x } ) = X c X T c Z 3 * * * * * * * 63 N 2 4 * * * * * * * 64 Z 5 * * * * * * * 65 � The covariance 2 6 * * * * * * * 06 matrix is a d×d matrix 2 7 * * * * * * * 67 - d =7

  9. What is the correlation between the 2 components for the data m? § � � 20 25 Covmat ( m ) = GT 25 40 ' , feet 2) Corr ( feat - u ) Wr l l , 25 1 Tiki tr

  10. Example: covariance matrix of a data set Mean centering mean ) A 2 = A 1 A T (II) (I) 1 " t � � 5 4 3 2 1 Inner product of each pairs: A 0 = [1,1] = 10 − 1 1 0 1 − 1 A 2 [2,2] = 4 A 2 � � 2 1 0 − 1 − 2 [1,2] = 0 A 2 A 1 = − 1 1 0 1 − 1 ' , 2) I (III) Cov C 0 Corr Cl , 4=0 Divide the matrix with N – the number of data poits � � � � = 1 N A 2 = 1 10 0 2 0 Covmat( ) { x } = 0 . 8 0 4 0 5

  11. What do the data look like when Covmat({x}) is diagonal? X (2) X (1) � � 5 4 3 2 1 A 0 = − 1 1 0 1 − 1 X (2) * * X (1) * - * * g Max or , # ° � � � � { x } = 1 N A 2 = 1 10 0 2 0 Covmat( ) = 0-z.ms ' 0 . 8 0 4 0 5

  12. : gatton Diagonal ' eisjrectz g- Et e - e. Etc : :] c. one : X " M X A X Xx " M = c :;H¥÷÷x÷÷x÷÷ ⇒ U U A = UN UT

  13. Diagonalization of a symmetric matrix � If A is an n × n symmetric square matrix, the eigenvalues are real. � If the eigenvalues are also disSnct, their eigenvectors are orthogonal � We can then scale the eigenvectors to unit length, and place them into an orthogonal matrix U = [ u 1 u 2 …. u n ] � We can write the diagonal matrix such Λ = U T AU that the diagonal entries of Λ are λ 1 , λ 2 … λ n in that order.

  14. Diagonalization example hi ? � For - AIL = 1 A 0 7. a) → ⇒ I ? I I � � 5 3 A = 3 5 eigenvectors ? A U , = 2 Up I , = 2 - 2114=0 ( A 3) v. → ⇒ v. =L . ! ) ✓ = fu , nil I } - fulfil ⇒ a- EH - full ] - t un res - normalized I ) eisen - et - A=?ff A= UTAU

  15. Diagonalization example hi ? � For - NII = 1 A O 7. a) → ⇒ l ? g I � � 5 3 z A = 3 5 eigenvectors ? A 4=80 , a. = 8 - 8114=0 ( A 3) v. → ⇒ v. =/ ! ) ✓ = lui al f } - - tf , ] , ⇒ u . - = ? , An -_ 2 Uz=fzf - I ] T normalized eisen - et - ; ) A= ? ( § A= UTAU

  16. ⇒ Rotation Matrix - t RT R Def : = " Ute formed U is V if can prove we generators by , normalized . T called U L are U matrices orthonormal UT rotation N are u matrices .

  17. * of : ! ! ) ' as =L ! ) u - =/ ! ) - f ! ) u . - - ← www.rfmdim ui÷m=÷T " Dot nd ' U z Ui = . Husk ? ' yay , = ? I - ti =

  18. " ZD A T wi :3 - it :c - . T - O 3.1 ut-f.sn " : d UTC Ux ) = ¥ " x - . x u " ✓ = u ⇒ UT . U = I

  19. Q.#Is#this#true?# Transforming+a+matrix+with+ orthonormal+matrix+only+rotates+the+ data+ UT x D A.+Yes+ u x B.+No+

  20. Dimension reduction from 2D to 1D Credit: Prof. Forsyth

  21. Step 1: subtract the mean Credit: Prof. Forsyth

  22. Step 2: Rotate to diagonalize the covariance IT . im ⑧ § txt → u . , Credit: Prof. Forsyth

  23. Step 3: Drop component(s) up -7117 Credit: Prof. Forsyth

  24. Principal Components � The columns of are the normalized eigenvectors of U the Covmat({x}) and are called the principal components of the data {x}

  25. Principal components analysis � We reduce the dimensionality of dataset { x } represented by matrix from d to s (s < d). D d × n � Step 1. define matrix such that m = D − mean ( D ) m d × n r i = U T m i � Step 2. define matrix such that r d × n True tht . Tom Λ = U T Covmat ( { x } ) U Λ Where saSsfies , is U T the diagonalizaSon of with the eigenvalues Covmat ( { x } ) sorted in decreasing order, is the orthonormal U eigenvectors’ matrix � Step 3. Define matrix such that is with the last p p d × n r d-s components of made zero. r

  26. What happened to the mean? � Step 1. mean ( m ) = mean ( D − mean ( D )) = 0 � Step 2. mean ( r ) = U T mean ( m ) = U T 0 = 0 � Step 3. mean ( p i ) = mean ( r i ) = 0 while i ∈ 1 : s mean ( p i ) = 0 while i ∈ s + 1 : d

  27. What happened to the covariances? � Step 1. Covmat ( m ) = Covmat ( D ) = Covmat ( { x } ) T � Step 2. - V m r - Covmat ( r ) = U T Covmat ( m ) U = Λ = A Grunt 3 × 3 ) AT Granat 4A the property for � Step 3. is with the last/smallest d-s Λ Covmat ( p ) diagonal terms turned to 0.

  28. Sample covariance matrix � In many staSsScal programs, the sample covariance matrix is defined to be Covmat ( m ) = m m T C c N − 1 � Similar to what happens to the unbiased standard deviaSon

  29. PCA an example � Step 1. � � � � 3 − 4 7 1 − 4 − 3 0 D = ⇒ mean ( D ) = 7 − 6 8 − 1 − 1 − 7 0 � � 3 − 4 7 1 − 4 − 3 m = 7 − 6 8 − 1 − 1 − 7 � Step 2. � Step 3.

  30. PCA an example � Step 1. � � � � 3 − 4 7 1 − 4 − 3 0 D = ⇒ mean ( D ) = 7 − 6 8 − 1 − 1 − 7 0 � � 3 − 4 7 1 − 4 − 3 m = 7 − 6 8 − 1 − 1 − 7 � Step 2. � � 20 25 Covmat ( m ) = λ 1 ≃ 57; λ 2 ≃ 3 ⇒ 25 40 � � � � 0 . 5606288 0 . 8280672 0 . 5606288 − 0 . 8280672 U T = ⇒ U = − 0 . 8280672 0 . 5606288 0 . 8280672 0 . 5606288 � Step 3.

  31. PCA an example � Step 1. � � � � 3 − 4 7 1 − 4 − 3 0 D = ⇒ mean ( D ) = 7 − 6 8 − 1 − 1 − 7 0 � � 3 − 4 7 1 − 4 − 3 m = 7 − 6 8 − 1 − 1 − 7 � Step 2. � � 20 25 Covmat ( m ) = λ 1 ≃ 57; λ 2 ≃ 3 ⇒ 25 40 � � � � 0 . 5606288 0 . 8280672 0 . 5606288 − 0 . 8280672 U T = ⇒ U = − 0 . 8280672 0 . 5606288 0 . 8280672 0 . 5606288 � � 7 . 478 − 7 . 211 10 . 549 − 0 . 267 − 3 . 071 − 7 . 478 ⇒ r = U T m = 1 . 440 − 0 . 052 − 1 . 311 − 1 . 389 2 . 752 − 1 . 440 � Step 3.

  32. PCA an example � Step 1. � � � � 3 − 4 7 1 − 4 − 3 0 D = ⇒ mean ( D ) = 7 − 6 8 − 1 − 1 − 7 0 � � 3 − 4 7 1 − 4 − 3 m = 7 − 6 8 − 1 − 1 − 7 � Step 2. � � 20 25 Covmat ( m ) = λ 1 ≃ 57; λ 2 ≃ 3 ⇒ 25 40 � � � � 0 . 5606288 0 . 8280672 0 . 5606288 − 0 . 8280672 U T = ⇒ U = − 0 . 8280672 0 . 5606288 0 . 8280672 0 . 5606288 � � 7 . 478 − 7 . 211 10 . 549 − 0 . 267 − 3 . 071 − 7 . 478 ⇒ r = U T m = 1 . 440 − 0 . 052 − 1 . 311 − 1 . 389 2 . 752 − 1 . 440 coordinates → new � Step 3. � � 7 . 478 − 7 . 211 10 . 549 − 0 . 267 − 3 . 071 − 7 . 478 along Pcl ⇒ p = 0 0 0 0 0 0

  33. What is this matrix for the previous example? U T Covmat ( m ) U =? ± e : :L ±

  34. The Mean square error of the projection � The mean square error is the sum of the smallest d-s eigenvalues in Λ d 1 1 � r i − p i � 2 = ( r ( j ) � � � i ) 2 N − 1 N − 1 j = s +1 i i

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend