probability and statistics
play

Probability*and*Statistics* ! for*Computer*Science** - PowerPoint PPT Presentation

Probability*and*Statistics* ! for*Computer*Science** Who!discovered!this?! ! n 1 + 1 e = lim n n Jacob Bernoulli Credit:!wikipedia! Hongye!Liu,!Teaching!Assistant!Prof,!CS361,!UIUC,!02.20.2020! Last*time*


  1. Probability*and*Statistics* � ! for*Computer*Science** Who!discovered!this?! ! � n � 1 + 1 e = lim n n →∞ Jacob Bernoulli Credit:!wikipedia! Hongye!Liu,!Teaching!Assistant!Prof,!CS361,!UIUC,!02.20.2020!

  2. Last*time* � Random!Variable!! � Review&with&ques,ons& � The&weak&law&of&large&numbers&

  3. Announcement* * please content start review course to l Mar . 5) Midterm l for Review your mistakes Uws for *

  4. last Experiment in lecture Received ' 16 results teams * corrected needs be One ere * 4.5 mean is * Sample random expt value for each Expected . 5 is

  5. Content* � Con$nuous'Random'Variable'' � Important!known!discrete! probability!distribuMons! !

  6. Example*of*a*continuous*random* variable* � The!spinner! Pco = 351=0 θ! θ ∈ (0 , 2 π ] 0! � The!sample!space!for!all!outcomes!is! not!countable! !

  7. the probability of * What is in a constant p LO = Oo ) ? do is UT ] ( o , * ⇐ the probability of what is It E o so E Oo ) ? p l - 2K

  8. Probability*density*function*(pdf)* � For!a!conMnuous!random!variable! X, !the! probability!that! X = x !is!essenMally!zero!for!all! (or!most)! x ,!so!we!can’t!define!! P ( X = x ) Ittner � Instead,!we!define!the! probability'density' func$on !(pdf)!over!an!infinitesimally!small! do - a nd interval! dx, p ( x ) dx = P ( X ∈ [ x, x + dx ]) - o � b � For a < b -1730 p ( x ) dx = P ( X ∈ [ a, b ]) ! p ex ) Z o - a

  9. Properties*of*the*probability*density* function** � !!!!!!!!! resembles' the!probability!funcMon! p ( x ) of!discrete!random!variables!in!that! � !!!!!!!!!!!!!!!!!!!!!!!!!!for!all! x p ( x ) ≥ 0 - � The!probability!of! X !taking!all!possible! = values!is!1.! � ∞ p ( x ) dx = 1 −∞ !

  10. Properties*of**the*probability*density* function** � !!!!!!!!! differs !from!the!probability! p ( x ) distribuMon!funcMon!for!a!discrete! random!variable!in!that! � !!!!!!!!!!!!is!not!the!probability!that! X !=! x !! p ( x ) � !!!!!!!!!!!!can!exceed!1! p ( x ) - J ! pexldx El # pixel ! !

  11. Probability*density*function:*spinner* � Suppose!the!spinner!has!equal!chance! stopping!at!any!posiMon.!What’s!the!pdf!of!the! - angle!θ!of!the!spin!posiMon?!!!!!!!!!! in f c! � if θ ∈ (0 , 2 π ] c p ( θ ) = 11 l l l - I 0 otherwise 0! 2π! θ � !For!this!funcMon!to!be!a!pdf,! - qigong Then!! � ∞ ⇒ c = 1 i p ( θ ) d θ = 1 2 π −∞

  12. Probability*density*function:*spinner* � What!the!probability!that!the!spin!angle!θ!is! within![!!!!!!!!!!!]?!!!!!!!!!! 12 , π π 7 O O pix C- cabs ) = Jb pcxsdx a ¥dx= S = 12

  13. Probability*density*function:*spinner* � What!the!probability!that!the!spin!angle!θ!is! within![!!!!!!!!!!!]?!!!!!!!!!! 12 , π π 7 p ( θ ) - 1 2 π % E 's 0! 2π! θ

  14. Probability*density*function:*spinner* � What!the!probability!that!the!spin!angle!θ!is! within![!!!!!!!!!!!]?!!!!!!!!!! 12 , π π 7 π � P ( π 12 ≤ θ ≤ π 7 7 ) = p ( θ ) d θ π 12 p ( θ ) 1 2 π 0! 2π! θ

  15. Probability*density*function:*spinner* � What!the!probability!that!the!spin!angle!θ!is! within![!!!!!!!!!!!]?!!!!!!!!!! 12 , π π 7 π π � P ( π 12 ≤ θ ≤ π � 1 5 7 7 7 ) = p ( θ ) d θ = 2 π d θ = 168 π π 12 12 - - - p ( θ ) 1 2 π 0! 2π! θ

  16. Q:*Probability*density*function:*spinner* � What!is!the!constant! c !given!the!spin!angle!θ! has!the!following!pdf?! p ( θ ) A.!1! B.!1/π! C.!2/π! c' D.!4/π! E.!1/2π! π! 0! 2π! θ

  17. Q:*Probability*density*function:*spinner* � What!is!the!constant! c !given!the!spin!angle!θ! has!the!following!pdf?! p ( θ ) A.!1! B.!1/π! x! C.!2/π! c' D.!4/π! E.!1/2π! π! 0! 2π! θ

  18. Expectation*of*continuous* variables* � Expected!value!of!a!conMnuous!random! variable! X weight& � ∞ E [ X ] = xp ( x ) dx x! - −∞ - � Expected!value!of!funcMon!of!conMnuous! random!variable! Y = f ( X ) - � ∞ ! E [ Y ] = E [ f ( X )] = f ( x ) p ( x ) dx T ype - −∞

  19. Probability*density*function:*spinner* � Given!the!probability!density!of!the!spin!angle!θ!!!!!!!!!!! � 1 if θ ∈ (0 , 2 π ] p ( θ ) = 2 π 0 otherwise - � The!expected!value!of!spin!angle!is!! . # do � ∞ o E [ θ ] = θ p ( θ ) d θ = EYE → " −∞ - T - =

  20. Probability*density*function:*spinner* � Given!the!probability!density!of!the!spin!angle!θ!!!!!!!!!!! � 1 if θ ∈ (0 , 2 π ] p ( θ ) = 2 π 0 otherwise � The!expected!value!of!spin!angle!is!! � 2 π � ∞ θ 1 2 π d θ E [ θ ] = θ p ( θ ) d θ = 0 −∞

  21. Probability*density*function:*spinner* � Given!the!probability!density!of!the!spin!angle!θ!!!!!!!!!!! � 1 if θ ∈ (0 , 2 π ] p ( θ ) = 2 π 0 otherwise � The!expected!value!of!spin!angle!is!! � 2 π � ∞ θ 1 2 π d θ = π E [ θ ] = θ p ( θ ) d θ = 0 −∞

  22. Properties*of*expectation*of* continuous*random*variables* � The!linearity!of!expected!value!is!true!for! conMnuous!random!variables. � � - � And!the!other!properMes!that!we!derived! for!variance!and!covariance!also!hold!for! - conMnuous!random!variable! - Given X , 'T indpt it x Y are RV varlx -41=051 × 7-1 vary ) !

  23. Q.* � Suppose!a!conMnuous!variable!has!pdf! � 2(1 − x ) x ∈ [0 , 1] p ( x ) = 0 otherwise ! J ! X pixldx X -2 × 2 ) Ix What!is!E[X]?!! = - ¥ If T = x' ✓ A.!1/2 !!!B.!1/3 !!!!C.!1/4!!! !! = ' -3 = 's D.!1 !!!!! !!!E.!2/3 ! � ∞ E [ X ] = xp ( x ) dx ! −∞

  24. Q.* � Suppose!a!conMnuous!variable!has!pdf! � 2(1 − x ) x ∈ [0 , 1] p ( x ) = 0 otherwise ! What!is!E[X]?!! A.!1/2 !!!B.!1/3 !!!!C.!1/4!!! !! x! D.!1 !!!!! !!!E.!2/3 ! !

  25. Variance*of*a*continuous*variable* pcx ) = f I ] X C- co , l otherwise 0 E[ ex - text ) varCx7= ? - - Efx ) -_ ? I pcx ) → ' I'm EE ± = Sj ex - IT . ' DX , I - 12

  26. CDE of the spin ? What is the variable random for continues CDF the same way defined is ⑧ pcxsdx Pex , - → p Cx ) = { It . ] e - it if x o , others =/ g.sc#.ax=Eaxei l - I :P " X > 2T , , pcxex ) - "

  27. Content* � ConMnuous!Random!Variable!! � Important'known'discrete' probability'distribu$ons' S I s !

  28. The*usefulness*of*probability* distributions* � Many!common!processes!generate!data! with!probability!distribuMons!that!belong!to! families!with!known!properMes! mr � Even!if!the!data!are!not!distributed! according!to!a!known!probability! distribuMon,!it!is!someMmes!useful!in! pracMce!to!approximate!with!known! distribuMon.!

  29. The*classic*discrete*distributions** distribution Discrete uniform * distribution Bernoulli * distribution }p?eIYouee Geometric : * Binomial distribution * distribution Multinomial *

  30. Discrete*uniform*distribution* � A!discrete!random!variable! X !is!uniform!if!it! takes!k!different!values!and!! ! ! !! P ( X = x i ) = 1 For!all! x i !that! X !can!take! k p ex , ein X � For!example:! . � Rolling!a!fair!kdsided!die! . " "÷¥ : = � Tossing!a!fair!coin!(k=2)! ±

  31. Discrete*uniform*distribution* � ExpectaMon!of!a!discrete!random!variable! X !that!! takes!k!different!values!uniformly! ECx7= Exipcx , k E [ X ] = 1 E � x i = k K = ¥ I ti i =1 - it � Variance!of!a!uniformly!distributed!random! variable! X !.! k var [ X ] = 1 � ( x i − E [ X ]) 2 k i =1 -

  32. Bernoulli*distribution* � A!random!variable! X !is! Bernoulli !if!it!takes!on!two! values!0!and!1!such!that! → H X =/ P PCX )=f ! → T , - p x=o others O !! IX. pix , E [ X ] = p - p -104 ) =L - p - =p var [ X ] = p (1 − p ) varCx7=ECX4 - ETx7=EEpcx , - p " ~ =p - p Jacob!Bernoulli!(1654d1705)! =p a - p ) Credit:!wikipedia!

  33. Bernoulli*distribution* � Examples! → H p T 1- � Tossing!a!biased!(or!fair)!coin! l - p - s -1 � Making!a!free!throw! pix-65.to � Rolling!a!sixdsided!die!and!checking!if!it!shows!6! - � Any'indicator'func$on !of!a!random!variable! ex ) =/ ! PCA ) =p A occurs torx Thea , - otherwise

  34. Geometric*distribution* � A!discrete!random!variable! X !is!geometric!if!! ie . p is the prob . of head P ( X = k ) = (1 − p ) k − 1 p k ≥ 1 a - PIK 's - ' p H,!TH,!TTH,!TTTH,!TTTTH,!TTTTTH,…! . - - - - k of them � Expected!value!and!variance ! E [ X ] = 1 var [ X ] = 1 − p & → p 2 p Ek CI - p ) KIELTY - ETXJ E- Cx ) -

  35. Geometric*distribution* P ( X = k ) = (1 − p ) k − 1 p k ≥ 1 P=!0.2! P=!0.5! Credit:!Prof.!Grinstead!

  36. Geometric*distribution* � Examples:! � How!many!rolls!of!a!sixdsided!die!will!it!take!to! see!the!first!6?! � How!many!Bernoulli!trials!must!be!done!before! the!first!1?! � How!many!experiments!needed!to!have!the!first! success?! � Plays!an!important!role!in!the! theory'of'queues'

  37. Derivation*of*geometric*expected* value* ∞ � k (1 − p ) k − 1 p E [ X ] = petit k =1 ∞ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! � k (1 − p ) k − 1 ! = p ! !!!!!!!!!!!!!! k =1 ! ∞ p k (1 − p ) k = 1 !! � = ! ! 1 − p p ! k =1 !

  38. Derivation*of*geometric* expected*value* ∞ � k (1 − p ) k − 1 p E [ X ] = O k =1 ∞ � k (1 − p ) k − 1 = p k =1 - ∞ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! p k (1 − p ) k = 1 � ! = ! 1 − p ! p !!!!!!!!!!!!!! k =1 ! !! ! ! !

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend