preserving randomness for adaptive algorithms
play

Preserving Randomness for Adaptive Algorithms Adam R. Klivans - PowerPoint PPT Presentation

Preserving Randomness for Adaptive Algorithms Adam R. Klivans William M. Hoza May 25, 2017 Caltech Theory of Computing Seminar 1 / 20 Randomized estimation algorithms Algorithm Est( C ) estimates some value ( C ) R d 2 / 20


  1. Analysis of warm-up steward 2 ε A ( µ ) B ( µ ) µ ◮ Imagine if the steward always returns A ( µ ) or B ( µ )... f 1 f A f B 2 2 f AA f AB f BA f BB 3 3 3 3 f AAA f AAB f ABA f ABB f BAA f BAB f BBA f BBB 4 4 4 4 4 4 4 4 ◮ Union bound: Pr [ X good for every function in tree ] ≥ 1 − 2 k δ 10 / 20

  2. Analysis of warm-up steward 2 ε A ( µ ) B ( µ ) µ ◮ Imagine if the steward always returns A ( µ ) or B ( µ )... f 1 f A f B 2 2 f AA f AB f BA f BB 3 3 3 3 f AAA f AAB f ABA f ABB f BAA f BAB f BBA f BBB 4 4 4 4 4 4 4 4 ◮ Union bound: Pr [ X good for every function in tree ] ≥ 1 − 2 k δ ◮ If so, inductively, every f i is in the tree! 10 / 20

  3. Main result ◮ Theorem : For all n , k , d , ε, δ, γ , there is an efficient one-query steward with 11 / 20

  4. Main result ◮ Theorem : For all n , k , d , ε, δ, γ , there is an efficient one-query steward with ◮ Error ε ′ ≤ O ( ε d ) 11 / 20

  5. Main result ◮ Theorem : For all n , k , d , ε, δ, γ , there is an efficient one-query steward with ◮ Error ε ′ ≤ O ( ε d ) ◮ Failure probability δ ′ ≤ k δ + γ 11 / 20

  6. Main result ◮ Theorem : For all n , k , d , ε, δ, γ , there is an efficient one-query steward with ◮ Error ε ′ ≤ O ( ε d ) ◮ Failure probability δ ′ ≤ k δ + γ ◮ # random bits n + O ( k log( d + 1) + log k log(1 /γ )) 11 / 20

  7. Main steward ◮ Pick random seed X , compute ( X 1 , . . . , X k ) = Gen( X ) 12 / 20

  8. Main steward ◮ Pick random seed X , compute ( X 1 , . . . , X k ) = Gen( X ) ◮ For i = 1 to k : 12 / 20

  9. Main steward ◮ Pick random seed X , compute ( X 1 , . . . , X k ) = Gen( X ) ◮ For i = 1 to k : ◮ Obtain W i = f i ( X i ) 12 / 20

  10. Main steward ◮ Pick random seed X , compute ( X 1 , . . . , X k ) = Gen( X ) ◮ For i = 1 to k : ◮ Obtain W i = f i ( X i ) ◮ Shift and round W i to determine output Y i 12 / 20

  11. Main steward ◮ Pick random seed X , compute ( X 1 , . . . , X k ) = Gen( X ) ◮ For i = 1 to k : ◮ Obtain W i = f i ( X i ) ◮ Shift and round W i to determine output Y i ◮ Ingredient 1: Gen: PRG for block decision trees 12 / 20

  12. Main steward ◮ Pick random seed X , compute ( X 1 , . . . , X k ) = Gen( X ) ◮ For i = 1 to k : ◮ Obtain W i = f i ( X i ) ◮ Shift and round W i to determine output Y i ◮ Ingredient 1: Gen: PRG for block decision trees ◮ Ingredient 2: Deterministic shifting and rounding algorithm 12 / 20

  13. Shifting and rounding algorithm ( d + 1) · 2 ε W i 1 W i 2 W i 3 W i 4 W i 5 13 / 20

  14. Shifting and rounding algorithm ( d + 1) · 2 ε W i 1 W i 2 W i 3 W i 4 W i 5 13 / 20

  15. Shifting and rounding algorithm ( d + 1) · 2 ε W i 1 W i 2 W i 3 W i 4 W i 5 13 / 20

  16. Shifting and rounding algorithm ( d + 1) · 2 ε W i 1 W i 2 W i 3 W i 4 W i 5 13 / 20

  17. Shifting and rounding algorithm ( d + 1) · 2 ε W i 1 W i 2 W i 3 W i 4 W i 5 13 / 20

  18. Shifting and rounding algorithm ( d + 1) · 2 ε W i 1 W i 2 W i 3 W i 4 W i 5 13 / 20

  19. Shifting and rounding algorithm ( d + 1) · 2 ε W i 1 W i 2 W i 3 W i 4 W i 5 13 / 20

  20. Shifting and rounding algorithm ( d + 1) · 2 ε W i 1 W i 2 W i 3 W i 4 W i 5 13 / 20

  21. Analysis of shifting and rounding algorithm ◮ For W ∈ R d and ∆ ∈ [ d + 1], define R ∆ ( W ) ∈ R d by shifting W according to ∆, then rounding 14 / 20

  22. Analysis of shifting and rounding algorithm ◮ For W ∈ R d and ∆ ∈ [ d + 1], define R ∆ ( W ) ∈ R d by shifting W according to ∆, then rounding ◮ By construction, Y i = R ∆ ( W i ) for some ∆ 14 / 20

  23. Analysis of shifting and rounding algorithm ◮ For W ∈ R d and ∆ ∈ [ d + 1], define R ∆ ( W ) ∈ R d by shifting W according to ∆, then rounding ◮ By construction, Y i = R ∆ ( W i ) for some ∆ ◮ Imagine if Y i = R ∆ ( µ i ) for some ∆... 14 / 20

  24. Analysis of shifting and rounding algorithm ◮ For W ∈ R d and ∆ ∈ [ d + 1], define R ∆ ( W ) ∈ R d by shifting W according to ∆, then rounding ◮ By construction, Y i = R ∆ ( W i ) for some ∆ ◮ Imagine if Y i = R ∆ ( µ i ) for some ∆... f 1 14 / 20

  25. Analysis of shifting and rounding algorithm ◮ For W ∈ R d and ∆ ∈ [ d + 1], define R ∆ ( W ) ∈ R d by shifting W according to ∆, then rounding ◮ By construction, Y i = R ∆ ( W i ) for some ∆ ◮ Imagine if Y i = R ∆ ( µ i ) for some ∆... f 1 f R 1 ( µ 1 ) f R 2 ( µ 1 ) f R 3 ( µ 1 ) ⊥ 2 2 2 14 / 20

  26. Analysis of shifting and rounding algorithm ◮ For W ∈ R d and ∆ ∈ [ d + 1], define R ∆ ( W ) ∈ R d by shifting W according to ∆, then rounding ◮ By construction, Y i = R ∆ ( W i ) for some ∆ ◮ Imagine if Y i = R ∆ ( µ i ) for some ∆... f 1 f R 1 ( µ 1 ) f R 2 ( µ 1 ) f R 3 ( µ 1 ) ⊥ 2 2 2 f R 2 ( µ 1 ) , R 1 ( µ 2 ) f R 2 ( µ 1 ) , R 2 ( µ 2 ) f R 2 ( µ 1 ) , R 3 ( µ 2 ) ⊥ 3 3 3 14 / 20

  27. Certification tree f 1 f R 1 ( µ 1 ) f R 2 ( µ 1 ) f R 3 ( µ 1 ) ⊥ 2 2 2 f R 2 ( µ 1 ) , R 1 ( µ 2 ) f R 2 ( µ 1 ) , R 2 ( µ 2 ) f R 2 ( µ 1 ) , R 3 ( µ 2 ) ⊥ 3 3 3 15 / 20

  28. Certification tree f 1 f R 1 ( µ 1 ) f R 2 ( µ 1 ) f R 3 ( µ 1 ) ⊥ 2 2 2 f R 2 ( µ 1 ) , R 1 ( µ 2 ) f R 2 ( µ 1 ) , R 2 ( µ 2 ) f R 2 ( µ 1 ) , R 3 ( µ 2 ) ⊥ 3 3 3 ◮ A sequence ( X 1 , . . . , X k ) of query points determines: 15 / 20

  29. Certification tree f 1 f R 1 ( µ 1 ) f R 2 ( µ 1 ) f R 3 ( µ 1 ) ⊥ 2 2 2 f R 2 ( µ 1 ) , R 1 ( µ 2 ) f R 2 ( µ 1 ) , R 2 ( µ 2 ) f R 2 ( µ 1 ) , R 3 ( µ 2 ) ⊥ 3 3 3 ◮ A sequence ( X 1 , . . . , X k ) of query points determines: ◮ A transcript ( f 1 , Y 1 , f 2 , Y 2 , . . . , f k , Y k ) 15 / 20

  30. Certification tree f 1 f R 1 ( µ 1 ) f R 2 ( µ 1 ) f R 3 ( µ 1 ) ⊥ 2 2 2 f R 2 ( µ 1 ) , R 1 ( µ 2 ) f R 2 ( µ 1 ) , R 2 ( µ 2 ) f R 2 ( µ 1 ) , R 3 ( µ 2 ) ⊥ 3 3 3 ◮ A sequence ( X 1 , . . . , X k ) of query points determines: ◮ A transcript ( f 1 , Y 1 , f 2 , Y 2 , . . . , f k , Y k ) ◮ A path P through tree 15 / 20

  31. Certification tree f 1 f R 1 ( µ 1 ) f R 2 ( µ 1 ) f R 3 ( µ 1 ) ⊥ 2 2 2 f R 2 ( µ 1 ) , R 1 ( µ 2 ) f R 2 ( µ 1 ) , R 2 ( µ 2 ) f R 2 ( µ 1 ) , R 3 ( µ 2 ) ⊥ 3 3 3 ◮ A sequence ( X 1 , . . . , X k ) of query points determines: ◮ A transcript ( f 1 , Y 1 , f 2 , Y 2 , . . . , f k , Y k ) ◮ A path P through tree ◮ If we pick X 1 , . . . , X k independently and u.a.r., ( X 1 ,..., X k ) [ P has a ⊥ node] ≤ k δ Pr 15 / 20

  32. Certification tree f 1 f R 1 ( µ 1 ) f R 2 ( µ 1 ) f R 3 ( µ 1 ) ⊥ 2 2 2 f R 2 ( µ 1 ) , R 1 ( µ 2 ) f R 2 ( µ 1 ) , R 2 ( µ 2 ) f R 2 ( µ 1 ) , R 3 ( µ 2 ) ⊥ 3 3 3 ◮ A sequence ( X 1 , . . . , X k ) of query points determines: ◮ A transcript ( f 1 , Y 1 , f 2 , Y 2 , . . . , f k , Y k ) ◮ A path P through tree ◮ If we pick X 1 , . . . , X k independently and u.a.r., ( X 1 ,..., X k ) [ P has a ⊥ node] ≤ k δ Pr ◮ (Certification) No ⊥ nodes in P = ⇒ every Y i has error O ( ε d ) 15 / 20

  33. Block decision trees ◮ ( k , n , q ) block decision tree: Full q -ary tree of height k 16 / 20

  34. Block decision trees ◮ ( k , n , q ) block decision tree: Full q -ary tree of height k v v a v b v c v aa v ab v ac v ba v bb v bc v ca v cb v cc 16 / 20

  35. Block decision trees ◮ ( k , n , q ) block decision tree: Full q -ary tree of height k ◮ Each internal node v s has a function v s : { 0 , 1 } n → [ q ] v v a v b v c v aa v ab v ac v ba v bb v bc v ca v cb v cc 16 / 20

  36. Block decision trees ◮ ( k , n , q ) block decision tree: Full q -ary tree of height k ◮ Each internal node v s has a function v s : { 0 , 1 } n → [ q ] v 00 , 11 10 01 v a v b v c v aa v ab v ac v ba v bb v bc v ca v cb v cc 16 / 20

  37. Block decision trees ◮ ( k , n , q ) block decision tree: Full q -ary tree of height k ◮ Each internal node v s has a function v s : { 0 , 1 } n → [ q ] ◮ Tree reads nk bits and outputs a leaf v 00 , 11 10 01 v a v b v c v aa v ab v ac v ba v bb v bc v ca v cb v cc 16 / 20

  38. PRG for block decision trees ◮ Theorem : There is an efficient γ -PRG for block decision trees with seed length n + O ( k log q + log k log(1 /γ )) 17 / 20

  39. PRG for block decision trees ◮ Theorem : There is an efficient γ -PRG for block decision trees with seed length n + O ( k log q + log k log(1 /γ )) ◮ Proof idea: Modify parameters of INW generator 17 / 20

  40. PRG for block decision trees ◮ Theorem : There is an efficient γ -PRG for block decision trees with seed length n + O ( k log q + log k log(1 /γ )) ◮ Proof idea: Modify parameters of INW generator ◮ This generator fools the certification tree 17 / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend