predictive coarse graining
play

Predictive Coarse-Graining M. Schberl (TUM), N.Zabaras - PowerPoint PPT Presentation

Predictive Coarse-Graining M. Schberl (TUM), N.Zabaras (Warwick/TUM-IAS), P .S. Koutsourelakis (TUM) Predictive Multiscale Materials Modelling Turing Gateway to Mathematics, Isaac Newton Institute for Mathematical Sciences Decemeber 1 2015


  1. Predictive Coarse-Graining M. Schöberl (TUM), N.Zabaras (Warwick/TUM-IAS), P .S. Koutsourelakis (TUM) Predictive Multiscale Materials Modelling Turing Gateway to Mathematics, Isaac Newton Institute for Mathematical Sciences Decemeber 1 2015 p.s.koutsourelakis@tum.de Predictive Coarse-Graining 1 / 32

  2. Problem Definition - Equilibrium Statistical Mechanics Fine scale p f ( x ) ∝ e − β V f ( x ) • x : fine -scale dofs • V f ( x ) : atomistic potential Observables: E p f [ a ] = � a ( x ) p f ( x ) d x p.s.koutsourelakis@tum.de Predictive Coarse-Graining 2 / 32

  3. Problem Definition - Equilibrium Statistical Mechanics Fine scale p f ( x ) ∝ e − β V f ( x ) • x : fine -scale dofs • V f ( x ) : atomistic potential � Observables: E p f [ a ] = a ( x ) p f ( x ) d x Coarse scale X = R ( x ) , dim ( X ) << dim ( x ) • X : coarse -scale dofs • R : restriction operator ( fine → coarse ) p.s.koutsourelakis@tum.de Predictive Coarse-Graining 2 / 32

  4. Problem Definition - Equilibrium Statistical Mechanics Fine scale p f ( x ) ∝ e − β V f ( x ) • x : fine -scale dofs • V f ( x ) : atomistic potential � Observables: E p f [ a ] = a ( x ) p f ( x ) d x Coarse scale X = R ( x ) , dim ( X ) << dim ( x ) • X : coarse -scale dofs • R : restriction operator ( fine → coarse ) Goal: How can one simulate X and still predict E p f [ a ] ? p.s.koutsourelakis@tum.de Predictive Coarse-Graining 2 / 32

  5. Problem Definition - Equilibrium Statistical Mechanics • Suppose the observable of interest a ( x ) depends on X i.e.: a ( x ) = A ( X ) = A ( R ( x )) • Then: � E p f [ a ] = a ( x ) p f ( x ) d x � = A ( R ( x ) p f ( x ) d x � �� � = A ( X ) δ ( X − R ( x )) d X p f ( x ) d x � �� � = A ( X ) δ ( X − R ( x )) p f ( x ) d x d X � = A ( X ) p c ( X ) d X where p c is the (marginal) PDF of the CG variables X : � δ ( X − R ( x )) p f ( x ) d x ∝ e − β V c ( X ) p c ( X ) = and the CG potential V c ( X ) is the potential of mean force (PMF) w.r.t. X : � V c ( X ) = − β − 1 log δ ( X − R ( x )) p f ( x ) d x p.s.koutsourelakis@tum.de Predictive Coarse-Graining 3 / 32

  6. Existing Methods • Free-energy methods (for low-dimensional X ) [ Lelièvre et al 2010 ] • Lattice systems [ Katsoulakis 2003 ], Soft matter ] Peter & Kremer 2010 ] • Inversion-based methods: Iterative Boltzmann Inversion [ Reith et al. (2003) ], Inverse Monte Carlo [ Lyubartsev & Laaksonen (1995), Soper (1996) ], Molecular RG-CG [ Savelyev & Papoian 2009 ] • Variational methods: Multiscale CG [ Izvekov &et al. (2005), Noid et al. (2007) ] , Relative Entropy [ Shell (2008) ], Ultra-Coarse-Graining [ Dama et al. 2013 ] p.s.koutsourelakis@tum.de Predictive Coarse-Graining 4 / 32

  7. Motivation • What are good coarse-grained variables X (how many, what is fine-to-coarse mapping R ) • What is the right CG potential (or CG model)? • How much information is lost during coarse-graining and how does this affect predictive uncertainty? • Given finite simulation data at the fine-scale, how (un)certain can we be in our predictions? • Can one use the same CG variables X to make predictions about observables a ( x ) � = A ( X ) ? p.s.koutsourelakis@tum.de Predictive Coarse-Graining 5 / 32

  8. Motivation Existing methods Fine-Scale x R ( x )= X → ¯ p f ( x ) − − − − − p c ( X ) R ( x ) Fine to Coarse � �� � � �� � coarse fine Coarse-Scale X Proposed (Generative model) Coarse-Scale X � p cf ( x | X ) → ¯ p c ( X ) − − − − − p f ( x ) = p cf ( x | X ) p c ( X ) d X Coarse to Fine � �� � � �� � coarse fine Fine-Scale x Notes • No restriction operator (fine-to-coarse R ( x ) = X ). • A probabilistic coarse-to-fine map p cf ( x | X ) is prescribed • The coarse model p c ( X ) is not the marginal of X (given R ( x ) = X ) p.s.koutsourelakis@tum.de Predictive Coarse-Graining 6 / 32

  9. Motivation Relative Entropy CG [Shell, 2008] • A fine → coarse map R and an (approximate) CG density ¯ p c ( X ) imply: p f ( x ) = δ ( R ( x ) − X ) ¯ ¯ p c ( R ( x )) Ω( R ( x )) � where: Ω( R ( x )) = δ ( R ( x ) − X ) d x • Find ¯ p c ( X ) that minimizes KL-divergence between p f ( x ) (exact) and ¯ p f ( x ) (approximate): KL ( p f ( x ) || ¯ p f ( x )) = KL ( p c ( X ) || ¯ p c ( X )) + S map ( R ) � �� � � �� � inf. loss due to error in PMF inf. loss due to map R � where S map = p f ( x ) log Ω( R ( x )) d x p.s.koutsourelakis@tum.de Predictive Coarse-Graining 7 / 32

  10. Motivation Proposed Probabilistic Generative model • A probabilistic coarse → fine map p cf ( x | X ) and a CG model p c ( X ) , imply: � ¯ p cf ( x | X ) p c ( X ) d X p f ( x ) = • Find p cf ( x | X ) and p c ( X ) that minimize: � � p cf ( x | X ) p c ( X ) d X KL ( p f ( x ) || ¯ p f ( x )) = − p f ( x ) log d x p f ( x ) p.s.koutsourelakis@tum.de Predictive Coarse-Graining 8 / 32

  11. Learning Proposed Probabilistic Generative model p c ( X | θ c ) , p cf ( x | X , θ cf ) • Parametrize: � �� � � �� � coarse model coarse → fine map • Optimize: θ c , θ cf KL ( p f ( x ) || ¯ p f ( x | θ c , θ cf )) min � � p cf ( x | X , θ cf ) p c ( X | θ c ) d X ↔ min θ c , θ cf − p f ( x ) log d x p f ( x ) � � � � ↔ max p f ( x ) p cf ( x | X , θ cf ) p c ( X | θ c ) d X log d x θ c , θ cf � N � p cf ( x ( i ) | X , θ cf ) p c ( X | θ c ) d X ↔ max i = 1 log θ c , θ cf ↔ max θ c , θ cf L ( θ c , θ cf ) , (MLE) • MAP estimate: max θ c , θ cf L ( θ c , θ cf ) + log p ( θ c , θ cf ) � �� � log − prior • Fully Bayesian i.e. posterior: p ( θ c , θ cf | x ( 1 : N ) ) ∝ exp {L ( θ c , θ cf ) p ( θ c , θ cf ) } p.s.koutsourelakis@tum.de Predictive Coarse-Graining 9 / 32

  12. Learning Proposed Probabilistic Generative model p c ( X | θ c ) , p cf ( x | X , θ cf ) • Parametrize: � �� � � �� � coarse model coarse → fine map • Optimize: θ c , θ cf KL ( p f ( x ) || ¯ p f ( x | θ c , θ cf )) min � � p cf ( x | X , θ cf ) p c ( X | θ c ) d X ↔ min θ c , θ cf − p f ( x ) log d x p f ( x ) � � � � ↔ max p f ( x ) p cf ( x | X , θ cf ) p c ( X | θ c ) d X log d x θ c , θ cf � N � p cf ( x ( i ) | X , θ cf ) p c ( X | θ c ) d X ↔ max i = 1 log θ c , θ cf ↔ max θ c , θ cf L ( θ c , θ cf ) , (MLE) • MAP estimate: max θ c , θ cf L ( θ c , θ cf ) + log p ( θ c , θ cf ) � �� � log − prior • Fully Bayesian i.e. posterior: p ( θ c , θ cf | x ( 1 : N ) ) ∝ exp {L ( θ c , θ cf ) p ( θ c , θ cf ) } p.s.koutsourelakis@tum.de Predictive Coarse-Graining 9 / 32

  13. Learning Proposed Probabilistic Generative model p c ( X | θ c ) , p cf ( x | X , θ cf ) • Parametrize: � �� � � �� � coarse model coarse → fine map • Optimize: θ c , θ cf KL ( p f ( x ) || ¯ p f ( x | θ c , θ cf )) min � � p cf ( x | X , θ cf ) p c ( X | θ c ) d X ↔ min θ c , θ cf − p f ( x ) log d x p f ( x ) � � � � ↔ max p f ( x ) p cf ( x | X , θ cf ) p c ( X | θ c ) d X log d x θ c , θ cf � N � p cf ( x ( i ) | X , θ cf ) p c ( X | θ c ) d X ↔ max i = 1 log θ c , θ cf ↔ max θ c , θ cf L ( θ c , θ cf ) , (MLE) • MAP estimate: max θ c , θ cf L ( θ c , θ cf ) + log p ( θ c , θ cf ) � �� � log − prior • Fully Bayesian i.e. posterior: p ( θ c , θ cf | x ( 1 : N ) ) ∝ exp {L ( θ c , θ cf ) p ( θ c , θ cf ) } p.s.koutsourelakis@tum.de Predictive Coarse-Graining 9 / 32

  14. Prediction Probabilistic Prediction • For an observable a ( x ) (reconstruction, [ Katsoulakis et al. 2006, Trashorras et al. 2010 ]): data � �� � x ( 1 : N ) ] ≈ E ¯ p f [ a | E p f [ a ] � a ( x ) ¯ p f ( x | x ( 1 : N ) ) d x = • For each θ c , θ cf from the posterior, one gets an estimate of the observable • Not just point-estimates anymore, but whole distributions! p.s.koutsourelakis@tum.de Predictive Coarse-Graining 10 / 32

  15. Prediction Probabilistic Prediction • For an observable a ( x ) (reconstruction, [ Katsoulakis et al. 2006, Trashorras et al. 2010 ]): data � �� � x ( 1 : N ) ] E p f [ a ] ≈ E ¯ p f [ a | � p f ( x | x ( 1 : N ) ) d x a ( x ) ¯ = � a ( x ) ¯ p f ( x , θ c , θ cf | x ( 1 : N ) ) d θ c d θ cf d x = � p f ( x | θ c , θ cf ) p ( θ c , θ cf | x ( 1 : N ) ) d θ c d θ cf d x a ( x ) ¯ = � �� � p ( θ c , θ cf | x ( 1 : N ) ) d θ c d θ cf d x = a ( x ) p cf ( x | X , θ cf ) p c ( X | θ c ) d X � �� � p ( θ c , θ cf | x ( 1 : N ) ) d θ c d θ cf = a ( x ) p cf ( x | X , θ cf ) p c ( X | θ c ) d X d x � ˆ a ( θ c , θ cf ) p ( θ c , θ cf | x ( 1 : N ) ) = d θ c d θ cf � �� � posterior • For each θ c , θ cf from the posterior, one gets an estimate of the observable • Not just point-estimates anymore, but whole distributions! p.s.koutsourelakis@tum.de Predictive Coarse-Graining 10 / 32

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend