precision calculations for fcc ee
play

PRECISION CALCULATIONS FOR FCC-ee selected examples on ( Z ) , ( W - PowerPoint PPT Presentation

PRECISION CALCULATIONS FOR FCC-ee selected examples on ( Z ) , ( W ) and Higgs production, mainly from QCD, not a review J. H. K uhn I) Z and related quantities II) M W from G F , M Z , III) Higgs production and decay 2 I) Z


  1. PRECISION CALCULATIONS FOR FCC-ee selected examples on Γ ( Z ) , Γ ( W ) and Higgs production, mainly from QCD, not a review J. H. K¨ uhn

  2. I) Γ Z and related quantities II) M W from G F , M Z , α III) Higgs production and decay 2

  3. I) Γ Z and related quantities Tera Z: Γ Z aim δΓ Z = 0 . 1 MeV (LEP: 2495 . 2 ± 2 . 3 MeV) present theory error: 0 . 2 MeV from ? [ stated in TLEP-paper ] closer look on QCD and mixed EW ⊗ QCD corrections 3

  4. Mixed electroweak and QCD: light quarks (u,d,c,s) terms of O ( αα s ) , Czarnecki, JK; hep-ph/9608366 W W Z Z Z Z W W (a) (b) W W Z Z Z Z W W (c) (d) ∆Γ ≡ Γ ( two loop (EW ⋆ QCD) ) − Γ Born δ NLO EW δ NLO QCD = − 0 . 59 ( 3 ) MeV three loop: reduction by # · α s π = #0 . 04 # should not exceed 5! corrections of O ( α w α 2 s ) (three loop) difficult 4

  5. Tera Z: Γ ( Z → b ¯ b ) ≡ Γ b aim: δ R b ≡ δΓ b Γ Z = 2 − 5 × 10 − 5 (LEP: R b = 0 . 21629 ± 0 . 00066 , corresponds to δΓ b ≈ 1 . 6 MeV) 2 × 10 − 5 corresponds to 0 . 05 MeV! corrections specific for b ¯ b : m 2 t -enhancement: order G F m 2 t and G F m 2 t α s ∆Γ = G F M 3 w )( 1 − π 2 − 3 α s t ( 1 − 2 16 π 3 G f m 2 3 s 2 π ) (Fleischer et al 1992) 3 Complete α w α s result: Γ b − Γ q = ( − 5 . 69 − 0 . 79 O ( α ) + 0 . 50 + 0 . 06 O ( αα s )) MeV separated into m 2 t -enhanced and rest (Harlander, Seidensticker, Steinhauser dressed with gluons hep-ph/9712228) 5

  6. motivates the evaluation of m 2 t -enhanced corrections of O ( G F m 2 t α 2 s ) (Chetyrkin, Steinhauser, hep-ph/990480) δΓ b ( G F m 2 t α 2 s ) ≈ 0 . 1 MeV (non-singlet) (absent in Z-fitter, G-fitter!) General observation: many top-induced corrections become significantly smaller, if m t is expressed in MS convention � � 4 � � α s � � α s � 2 � α s � 3 � α s m t ( ¯ m t ) = 1 − 1 . 33 − 6 . 46 − 60 . 27 − 704 . 28 ¯ m pole π π π π ր ր (Karlsruhe, 1999) ( Marquard, Smirnov, Smirnov, Steinhauser, 2015) = ( 173 . 34 − 7 . 96 − 1 . 33 − 0 . 43 − 0 . 17 ) GeV � � = 163 . 45 ± 0 . 72 | m t ± 0 . 19 | α s ± ? | th GeV top scan ⇒ m ( potential subtracted ) δ m t ∼ 20 − 30 MeV 6

  7. Tera Z: Γ b ( Z → b ¯ b ) Can we isolate the Zb ¯ b -vertex? R b = 0 . 21629 ± 0 . 00066 (LEP); 3% � = 1 . 65 MeV 2 − 5 × 10 − 5 � = 50 − 120 keV TLEP: conceptual problem: singlet-terms � � 2 � � c b c b � � � � � � + + ... ¯ � c ¯ � b � � � � ¯ c ¯ b   c c b b   c b   + + Im   c b mixed contributions, “singlet” � � � α s � 2 ≈ 340 keV G F M 3 Γ singlet Z = √ 0 . 31 b ¯ π bc ¯ c 2 π 8 (total hadronic rate more robust!) 7

  8. Tera Z: Γ had and Γ had / Γ lept corrections known to O ( α 4 N 3 LO s ) , (Baikov, Chetyrkin, JK, Rittinger, arxiv: 0801.1821, 1201.5804) 0 non-singlet & singlet, vector & axial correlators � 0.00001 V � M Z , Μ � � 0.00002 t,b t,b � 0.00003 r S � 0.00004 � 0.00005 0.5 1.0 1.5 2.0 2.5 3.0 1.041 Μ � M Z � 0.003 1.040 � 0.004 1.039 � M Z , Μ � � 0.005 A � M Z , Μ � 1.038 r N S � 0.006 1.037 � 0.007 r S 1.036 � 0.008 � 0.009 1.035 0.5 1.0 1.5 2.0 2.5 3.0 � 0.010 Μ � M Z 0.5 1.0 1.5 2.0 2.5 3.0 Μ � M Z 8

  9. � theory uncertainty from M Z / 3 < µ < 3 M Z   ⇒ δΓ NS = 101 keV ;   Σ = 145 . 7 keV δΓ V = 2 . 7 keV ; S ( corresponds to δα s ∼ 3 × 10 − 4 )   δΓ A  = 42 keV ; S TLEP: δΓ had � = 100 keV � similar analysis of Γ ( W → had) only affected by non-singlet corrections! � b-mass corrections under control: m 2 b α 4 s ; m 4 b α 3 s ; ... � one more loop? α 2 s ( 1979 ) , α 3 s ( 1991 ) , α 4 s ( 2008 ) , α 5 s ( ? ) , guesses on α 5 s based on ... . 9

  10. II) M W from G F , M Z , α LEP: δ M W ≃ 30 MeV; TLEP: δ M W ≃ 0 . 5 − 1 MeV Theory � �� � � M 2 1 − 4 πα ( 1 − δρ ) M 2 1 Z W = f ( G F , M Z , m t , ∆α ,... ) = 1 + √ 1 − ∆α + ... ; 2 ( 1 − δρ ) 2 G F M 2 Z m t -dependence through δρ t cos 2 θ w δ M W ≈ M W 1 cos 2 θ w − sin 2 θ w δρ ≈ 5 . 7 × 10 4 δρ [MeV] 2 � � 3 � � α s � � α s � 2 − 93 . 1 � α s δρ t = 3 X t 1 − 2 . 8599 − 14 . 594 π π π ↓ ↓ δ M W = 9 . 5 MeV δ M W = 2 . 1 MeV α 3 s : 4 loop (Chetyrkin, JK, Maierh¨ ofer, Sturm; Boughezal, Czakon, 2006) 10

  11. mixed QCD ⋆ electroweak -5 -4 ⋅ 10 δ M W [MeV] 2 θ eff δ sin 5 -5 -2 ⋅ 10 0 0 -5 2 ⋅ 10 -5 2 contribution X t -5 2 X t contribution 4 ⋅ 10 α s α s X t 2 contribution -10 -5 6 ⋅ 10 3 contribution X t -15 -5 8 ⋅ 10 1 ⋅ 10 -4 -20 M H / M t 0 1 2 3 4 5 ( X t ≡ G F m 2 three loop t ) X 3 ⇒ 200 eV (purely weak) t α s X 2 ⇒ 2 . 5 MeV (mixed) t α 2 ⇒ − 9 . 5 MeV s X t (QCD three loop) α 3 ⇒ 2 . 1 MeV s X t (QCD four loop) 11

  12. the future individual uncalculated higher orders below 0 . 5 MeV, examples: α 2 s X 2 t presumably feasible (4 loop tadpoles), α 4 s X t 5 loop tadpoles? dominant contribution from m t ( pole ) ⇒ ¯ m t crucial input: m t also for stability of the universe 0.05 δ M W ≈ 6 × 10 − 3 δ m t 3 loop 0.04 2 loop δ m t = 1 GeV 0.03 M t � 173.34 � 0.76 GeV 0.02 M t � 173.34 � 0.76 GeV ⇒ δ M W ≈ 6 MeV (status) Λ � Μ � 0.01 conversely: 0.00 TLEP: δ M W = 0 . 5 MeV � 0.01 requires δ m t = 100 MeV � 0.02 6 8 10 12 14 16 18 Log 10 � Μ � GeV � (Zoller) 12

  13. TLEP: δ m t = 10 − 20 MeV based on bold extrapolation of ILC study (ILC: 35 MeV, no theory error) momentum distribution etc: LO only σ tot in N 3 LO just completed (Beneke, Kiyo Marquard, Piclum, Penin, Steinhauser) 1.4 1.10 Γ t +100 MeV 1.2 Γ t − 100 MeV NNLO R/R( µ = 80 GeV) 1.05 1.0 0.8 NNNLO NLO 1.00 R 0.6 0.4 0.95 0.2 0.0 0.90 340 342 344 346 348 340 342 344 346 348 � s (GeV) � s (GeV) robust location of threshold, extraction of λ Yuk requires normalization! 13

  14. m t ( ¯ m t ) ⇔ m pole important ingredient: ¯ α s ≡ α ( 6 ) example: m pole = 173 . 340 ± 0 . 87 GeV, s ( m t ) = 0 . 1088 4 loop term is just completed ( Marquard, Smirnov, Smirnov, Steinhauser, 2015) � � 1 + 0 . 4244 α s + 0 . 8345 α 2 s + 2 . 365 α 3 s +( 8 . 49 ± 0 . 25 ) α 4 = m t ( ¯ m t ) m pole ¯ s = ( 163 . 643 + 7 . 557 + 1 . 617 + 0 . 501 + 0 . 195 ± 0 . 05 ) GeV four-loop term matters! 14

  15. III) Higgs production and decay ✰ ❡ ❍ ❩ ✲ ❡ ❩ � ✰ ⑧ ❡ ❲ ❍ ❲ ✰ ✰ ✲ ❡ ❡ ❡ ⑧ ✁ ❍ ✁ ✲ ✲ ❡ ❡ Cross sections for the three major Higgs production processes as a function of center of mass energy, from arXiv:1306.6352 15

  16. example: H → b ¯ b dominant decay mode, all branching ratios are affected! TLEP: σ HZ × Br ( H → b ¯ b ) : aim 0 . 2% Higgs WG, arXiv:1307.1347 (Table 1) assumes α s = 0 . 119 ± 0 . 002 , m b | pole = 4 . 49 ± 0 . 06 GeV: δΓ ( H → b ¯ b ) b ) = ± 2 . 3% | α s ± 3 . 2% | m b ± 2 . 0% | th ⇒ 7 . 5% Γ ( H → b ¯ H , µ 2 = M 2 b ) = G F M H Γ ( H → b ¯ 2 π m 2 b ( M H ) R S ( s = M 2 √ H ) Our estimate: 4 � α s � � α s � 2 � α s � 3 � α s � 4 R S ( M H ) = 1 + 5 . 667 + 29 . 147 + 41 . 758 − 825 . 7 π π π π = 1 + 0 . 1948 + 0 . 03444 + 0 . 0017 − 0 . 0012 = 1 . 2298 (Chetyrkin, Baikov, JK, 2006) for α s ( M Z ) = 0 . 118 , α s ( M H ) = 0 . 108 Theory uncertainty ( M H / 3 < µ < 3 M H ) : 5 � (four loop) reduced to 1 . 5 � (five loop) 16

  17. present parametric uncertainties: m b ( 10 GeV ) = 3610 − α s − 0 . 1189 12 ± 11 MeV (Karlsruhe, arXiv:0907.2110) 0 . 002 � � Bodenstein+Dominguez: 3623 ( 9 ) MeV 3617 ( 25 ) MeV HPQCD ( α s uncertainties are presently dominant, assuming δ = 0 . 002 they influence m b -determination; runnung to M H ; R S ) running from 10 GeV to M H depends on anomalous mass dimension, β -function and α s m b ( M H ) = 2759 ± 8 | m b ± 27 | α s MeV γ 4 (five loop): Baikov + Chetyrkin, 2012 β 4 under construction δ m 2 b ( M H ) b ( M H ) = − 1 . 4 × 10 − 4 ( β 4 − 4 . 3 × 10 − 4 ( β 4 − 7 . 3 × 10 − 4 ( β 4 β 0 = 0 ) | β 0 = 100 ) | β 0 = 200 ) m 2 b ) = 2 . 0 × 10 − 4 (FCC-ee) to be compared with δΓ ( H → b ¯ b ) / Γ ( H → b ¯ 17

  18. (assume δα s = 2 × 10 − 4 ) perspectives: δ m b ( 10 GeV ) / m b ∼ 10 − 3 conceivable (dominated by δΓ ( ϒ → e + e − ) ) ⇒ δΓ H → b ¯ b = ± 2 × 10 − 3 | m b ± 1 . 3 × 10 − 3 | α s , running ± 1 × 10 − 3 | theory b Γ H → b ¯ similarly: Γ c δ m c ( 3 GeV ) / m c ( 3 GeV ) = 13 MeV / 986 MeV (now) = 5 MeV / 986 MeV (conceivable) m c ( M H ) = ( 609 ± 8 | m c ± 9 | α s ) MeV (now) ± 3 MeV (conceivable) ⇒ δΓ c ± 5 . 5 × 10 − 2 = (now) Γ c ± 1 × 10 − 2 = (conceivable) Starting from order α 3 s the separation of H → gg and H → b ¯ b is no longer unambiguously possible. (Chetyrkin, Steinhauser, 1997) 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend