post newtonian theory versus black hole perturbations
play

POST-NEWTONIAN THEORY VERSUS BLACK HOLE PERTURBATIONS Luc Blanchet - PowerPoint PPT Presentation

Rencontres du Vietnam Hot Topics in General Relativity & Gravitation POST-NEWTONIAN THEORY VERSUS BLACK HOLE PERTURBATIONS Luc Blanchet Gravitation et Cosmologie ( G R C O ) Institut dAstrophysique de Paris 28 mars 2015 Luc Blanchet


  1. Rencontres du Vietnam Hot Topics in General Relativity & Gravitation POST-NEWTONIAN THEORY VERSUS BLACK HOLE PERTURBATIONS Luc Blanchet Gravitation et Cosmologie ( G R ε C O ) Institut d’Astrophysique de Paris 28 mars 2015 Luc Blanchet (IAP) PN theory vs BH perturbations Rencontres de Moriond 1 / 29

  2. World-wide network of gravitational wave detectors A Global Network of Interferometers A Global Network of Interferometers LIGO Hanford 4 & 2 km GEO Hannover 600 m Kagra Japan 3 km LIGO South Indigo Virgo Cascina 3 km LIGO Livingston 4 km The network will observe the GWs in the high-frequency band 10 Hz � f � 10 3 Hz Luc Blanchet (IAP) PN theory vs BH perturbations Rencontres de Moriond 2 / 29

  3. Space-based laser interferometric detector eLISA eLISA will observe the GWs in the low-frequency band 10 − 4 Hz � f � 10 − 1 Hz Luc Blanchet (IAP) PN theory vs BH perturbations Rencontres de Moriond 3 / 29

  4. The inspiral and merger of compact binaries Neutron stars spiral and coalesce Black holes spiral and coalesce Neutron star ( M = 1 . 4 M ⊙ ) events will be detected by ground-based 1 detectors LIGO/VIRGO Stellar size black hole ( 5 M ⊙ � M � 20 M ⊙ ) events will also be detected by 2 ground-based detectors Supermassive black hole ( 10 5 M ⊙ � M � 10 8 M ⊙ ) events will be detected 3 by the space-based detector eLISA Luc Blanchet (IAP) PN theory vs BH perturbations Rencontres de Moriond 4 / 29

  5. Extreme mass ratio inspirals (EMRI) for eLISA A neutron star or a stellar black hole follows a highly relativistic orbit around a supermassive black hole. The gravitational waves generated by the orbital motion are computed using black hole perturbation theory Observations of EMRIs will permit to test the no-hair theorem for black holes, i.e. to verify that the central black hole is described by the Kerr geometry Luc Blanchet (IAP) PN theory vs BH perturbations Rencontres de Moriond 5 / 29

  6. Modelling the compact binary inspiral J = L + S + S 1 2 L S 1 1 m S 1 2 CM m 2 Luc Blanchet (IAP) PN theory vs BH perturbations Rencontres de Moriond 6 / 29

  7. Methods to compute GW templates log 10 ( r / m ) 4 Post-Newtonian 3 −1 Theory (Compactness) 2 Numerical Perturbation 1 Relativity Theory 0 log 10 ( m 2 / m 1 ) 0 1 2 3 4 Mass Ratio Luc Blanchet (IAP) PN theory vs BH perturbations Rencontres de Moriond 7 / 29

  8. Methods to compute GW templates m 2 r log 10 ( r / m ) m 1 4 Post-Newtonian 3 −1 Theory (Compactness) 2 Numerical Perturbation 1 Relativity Theory 0 log 10 ( m 2 / m 1 ) 0 1 2 3 4 Mass Ratio Luc Blanchet (IAP) PN theory vs BH perturbations Rencontres de Moriond 7 / 29

  9. Methods to compute GW templates log 10 ( r / m ) 4 m 2 Post-Newtonian 3 −1 Theory (Compactness) 2 m 1 Numerical Perturbation 1 Relativity Theory 0 log 10 ( m 2 / m 1 ) 0 1 2 3 4 Mass Ratio Luc Blanchet (IAP) PN theory vs BH perturbations Rencontres de Moriond 7 / 29

  10. Methods to compute GW templates log 10 ( r / m ) 4 Post-Newtonian 3 −1 Theory (Compactness) 2 Numerical Perturbation 1 Relativity Theory 0 log 10 ( m 2 / m 1 ) 0 1 2 3 4 Mass Ratio [Caltech/Cornell/CITA collaboration] Luc Blanchet (IAP) PN theory vs BH perturbations Rencontres de Moriond 7 / 29

  11. The gravitational chirp of compact binaries merger phase inspiralling phase ringdown phase innermost circular orbit r = 6M Luc Blanchet (IAP) PN theory vs BH perturbations Rencontres de Moriond 8 / 29

  12. The gravitational chirp of compact binaries merger phase numerical relativity inspiralling phase post-Newtonian theory ringdown phase perturbation theory innermost circular orbit r = 6M Luc Blanchet (IAP) PN theory vs BH perturbations Rencontres de Moriond 8 / 29

  13. Inspiralling binaries require high-order PN modelling [Cutler, Flanagan, Poisson & Thorne 1992; Blanchet & Sch¨ afer 1993] observer i m 2 orbital plane m 1 φ ascending node � GMω � − 5 / 3 � � φ ( t ) = φ 0 − M 1 +1PN + 1 . 5PN + · · · + 3PN + · · · c 3 c 2 c 3 c 6 µ � �� � � �� � needs to be computed with 3PN precision at least result of the quadrupole formalism (sufficient for the binary pulsar) Luc Blanchet (IAP) PN theory vs BH perturbations Rencontres de Moriond 9 / 29

  14. Short History of the PN Approximation EQUATIONS OF MOTION RADIATION FIELD 1PN equations of motion [Lorentz & 1918 Einstein quadrupole formula Droste 1917; Einstein, Infeld & Hoffmann 1938] 1940 Landau-Lifchitz formula Radiation-reaction controvercy [Ehlers 1960 Peters-Mathews formula et al 1979; Walker & Will 1982] EW multipole moments [Thorne 1980] 2.5PN equations of motion and GR BD moments and wave generation prediction for the binary pulsar formalism [BD 1989; B 1995, 1998] [Damour & Deruelle 1982; Damour 1983] 1PN orbital phasing [Wagoner & Will The “3mn” Caltech paper [Cutler, 1976; BS 1989] Flanagan, Poisson & Thorne 1993] 2PN waveform [BDIWW 1995] 3.5PN equations of motion [Jaranowski 3.5PN phasing and 3PN waveform & Sch¨ afer 1999; BF 2001; ABF 2002; BI 2003; [BFIJ 2003; BFIS 2007] Itoh & Futamase 2003; Foffa & Sturani 2011] Ambiguity parameters resolved [BI Ambiguity parameters resolved [DJS 2004; BDEI 2004, 2005] 2001; BDE 2003] 4.5PN (?) 4PN [DJS, BBBFM] Luc Blanchet (IAP) PN theory vs BH perturbations Rencontres de Moriond 10 / 29

  15. 4PN equations of motion of compact binaries d v i d t = − Gm 2 1 n i 12 r 2 12 1PN Lorentz-Droste-EIH term � �� � �� 5 G 2 m 1 m 2 � � + 4 G 2 m 2 1 2 n i + + · · · 12 + · · · r 3 r 3 c 2 12 12 � 1 � + 1 + 1 + 1 + 1 1 c 4 [ · · · ] c 5 [ · · · ] c 6 [ · · · ] c 7 [ · · · ] + c 8 [ · · · ] + O c 9 � �� � � �� � � �� � � �� � � �� � 2PN 2.5PN 3PN 3.5PN 4PN radiation reaction radiation reaction conservative & radiation tail  [Jaranowski & Sch¨ afer 1999; Damour, Jaranowski & Sch¨ afer 2001] ADM Hamiltonian    [Blanchet & Faye 2000; de Andrade, Blanchet & Faye 2001] Harmonic equations of motion 3 PN [Itoh, Futamase & Asada 2001; Itoh & Futamase 2003] Surface integral method    [Foffa & Sturani 2011] Effective field theory � [Jaranowski & Sch¨ afer 2013; Damour, Jaranowski & Sch¨ afer 2014] ADM Hamiltonian 4 PN [See the talk of Laura Bernard in this meeting] Harmonic Lagrangian Luc Blanchet (IAP) PN theory vs BH perturbations Rencontres de Moriond 11 / 29

  16. 3.5PN energy flux of compact binaries (4.5PN?) [Blanchet, Faye, Iyer & Joguet 2002] 1.5PN tail � � � F GW = − 32 c 5 � �� � − 1247 336 − 35 5 G ν 2 x 5 4 πx 3 / 2 1 + 12 ν x + � � − 44711 9072 + 9271 504 ν + 65 x 2 + [ · · · ] x 5 / 2 18 ν 2 + � �� � 2.5PN tail x 5 �� � [ · · · ] x 3 + [ · · · ] x 7 / 2 + [ · · · ] x 4 + [ · · · ] x 9 / 2 + + O � �� � � �� � � �� � � �� � 3.5PN tail 3PN 4PN (?) 4.5PN (?) includes a tail-of-tail The orbital frequency and phase for quasi-circular orbits are deduced from an energy balance argument d E d t = −F GW Spin contributions are also known to high order [Boh´ e, Marsat, Faye & Blanchet 2013] Luc Blanchet (IAP) PN theory vs BH perturbations Rencontres de Moriond 12 / 29

  17. General problem of the gravitational perturbation A particle is moving on a background u µ u µ = f µ = 0 space-time m 2 Its own stress-energy tensor modifies the background gravitational field Because of the “back-reaction” the motion f µ of the particle deviates from a background m 1 geodesic hence the appearance of a gravitational self force (GSF) The self acceleration of the particle is proportional to its mass � m 1 � u µ D¯ = f µ = O d τ m 2 The self force is computed by numerical methods [Sago, Barack & Detweiler 2008] Luc Blanchet (IAP) PN theory vs BH perturbations Rencontres de Moriond 13 / 29

  18. Common regime of validity of GSF and PN m 2 r log 10 ( r / m ) m 1 4 Post-Newtonian Theory Post-Newtonian 3 −1 & Theory (Compactness) Perturbation Theory 2 Numerical Perturbation 1 Relativity Theory 0 log 10 ( m 2 / m 1 ) 0 1 2 3 4 Mass Ratio Luc Blanchet (IAP) PN theory vs BH perturbations Rencontres de Moriond 14 / 29

  19. Why and how comparing PN and GSF predictions? Both the PN and GSF approaches use a self-field regularization for point particles followed by a renormalization. However, the prescription are very different GSF theory is based on a prescription for the Green function G R that is at 1 once regular and causal [Detweiler & Whiting 2003] PN theory uses dimensional regularization and it was shown that subtle issues 2 appear at the 3PN order due to the appearance of poles ∝ ( d − 3) − 1 How can we make a meaningful comparison? Restrict attention to the conservative part (circular orbits) of the dynamics 1 Find a gauge-invariant observable computable in both formalisms 2 Luc Blanchet (IAP) PN theory vs BH perturbations Rencontres de Moriond 15 / 29

  20. Circular orbit means Helical Killing symmetry µ u 1 µ K µ µ 1 K K light cylinder time space particle's trajectories Luc Blanchet (IAP) PN theory vs BH perturbations Rencontres de Moriond 16 / 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend