physics 116
play

Physics 116 ELECTROMAGNETISM AND OSCILLATORY MOTION Lecture 2 SHM - PowerPoint PPT Presentation

Physics 116 ELECTROMAGNETISM AND OSCILLATORY MOTION Lecture 2 SHM and circular motion Sept 30, 2011 R. J. Wilkes Email: ph116@u.washington.edu In case you were not here yesterday: First: Im not Wilkes! Your lecturer today: Victor


  1. Physics 116 ELECTROMAGNETISM AND OSCILLATORY MOTION Lecture 2 SHM and circular motion Sept 30, 2011 R. J. Wilkes Email: ph116@u.washington.edu

  2. In case you were not here yesterday: First: I’m not Wilkes! Your lecturer today: Victor Polinger Substituting for R. J. Wilkes (He will return on Monday)

  3. Announcements In case you were not here yesterday: (we’ll have a slide like this one most days) - PHYS 116 Course home page: Visit frequently for updated course info! http://faculty.washington.edu/wilkes/116/ - Physics Dept’s general-information page for 100 courses: http://www.phys.washington.edu/1xx/ - Webassign page (for homework and grades): http://webassign.net/washington/login.html 30-Sept-2011 Physics 116 - Au11 3

  4. All HW Assignments and Grades on WebAssign � Homework solutions are submitted online. � Homework solutions are submitted online. � No work is accepted past due date. � No work is accepted past due date. � Click on assignment � Click on assignment name name to begin working to begin working . � Grades � Grades for homework are stored in lecture section. for homework are stored in lecture section. NOTE: Lab grades stored separately, under their own sections own sections. . NOTE: Lab grades stored separately, under their

  5. In case you were not Other Class Resources here yesterday: • Your Fellow Students – You’re encouraged to study and discuss class together! • Physics Study Center (A-wing Mezzanine, just under our lecture room) – Meeting place / work space for students – Get guidance and help from TAs outside 116 office hours – Look over other textbooks on the same subjects Physics Library (6 th floor of C-wing) • – Best view from a comfy chair on campus! • Class discussion board – https://catalyst.uw.edu/gopost/board/wilkes/23253/ • Your TA – Kyle Armour (take a bow, Kyle) – He will post office hours next week – Email questions to him via class email, ph116@uw.edu

  6. In case you were not “Clickers” are required here yesterday: iCue / H-ITT Clickers (TX-3100) • Required to enter answers in quizzes – Be sure to get radio (RF), not infrared (IR) • We will not use them this week • We’ll practice using them next week, and begin using them for pop quizzes thereafter – Bring your clicker to class every day from Oct 3 onward • Why must we torture you with pop quizzes? – Motivation to attend class (physically and mentally)! – Quizzes are designed to be easy I F you are paying attention • Questions will be about something we just discussed!

  7. 7 Today Lecture Schedule Physics 116 - Au11 (up to exam 1) 30-Sept-2011

  8. summary from Oscillation terminology yesterday: • Period T = le ngth of one full cycle (time between peaks) • Frequency f = number of cycles per unit time (units = 1 / time) • Amplitude A = maximum displacement (length) • Graph of oscillating object’s position vs time for T = 1 sec, f = 1 Hz, A = 2 m position along the cycle is the phase of the wave: ( t / T ) = (φ / 2π) so φ = 2π ( t / T ) , or φ = 360 ° ( t / T ) 2 T = 1 sec f = 1 / T 1 Unit of frequency = 0 1 cycle/sec 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 = 1 hertz (Hz) A = 2 m -1 -2 Distance, meters time, seconds

  9. Examples / applications 1. Pulse rate is 70 beats / minute • What is f in Hz ? This is just conversion of units: 1 min = 60 sec so f in Hz (cycles/sec) = (cycles/min)*(min/sec) f = { 70 (1/min) }* { 1/60 (min/sec) } = 70/60 (1/sec=Hz) = 1.17 Hz • What is period T in sec ? connection between f and T : f = 1 / T So in this case T = 1 / f = 1 / 1.17 Hz (cycles/sec) = 0.85 sec 2. Mass on a spring moves with amplitude A and period T • How long does it take to move a net distance A ? Definition of A = distance displaced in ¼ of a cycle (1 cycle takes t = T) so it reaches x = A at time t = T/4 A Note: it does NOT reach A/2 in T/8! A/2 Speed is not constant: x = A sin(2 p { t / T }) t=T x=A/2 when sin(2 p { t / T }) = ½ T/4 here t / T = fraction of a full cycle at time t, 2 p { t / T } = fraction of 2 p = phase of sine curve at t T/12 sin -1 ( ½ ) = 0.52 radians = 0.083*2 p So x=A/2 when { t / T }=0.083, or t = 0.083T = T / 12 sin -1 (x) means “angle whose sine is x” (arcsine, or inverse sine) 30-Sept-2011 Physics 116 - Au11 9

  10. Position vs time in simple harmonic motion • Restoring force (spring-mass example): F = - k x • For Simple Harmonic Motion (SHM), k = constant – force is proportional to displacement • Acceleration a = F/m = -(k/m)*x • Now comes magic (i.e. calculus, beyond our scope): as you know, – a = rate of change of velocity v (“derivative” of v) – v = rate of change of position x (“derivative” of x) ⎛ ⎞ ⎛ ⎞ 2 d dx d x k – In the language of calculus, = → − = → = − ⎜ ⎟ ⎜ ⎟ F ma kx m x ⎝ ⎠ ⎝ ⎠ 2 dt dt m dt – This is a “differential equation” for x vs time phase, 0 - 2 π …whose solution (magic!) is 0 1 2 3 4 5 6 ⎛ ⎞ ⎛ ⎞ 1.5 t = ⎜ π ⎟ ⎜ ⎟ x ( t ) A cos ⎜ 2 ⎟ ⎝ ⎠ ⎝ ⎠ 1 T displacement Where A=displacement at t=0 0.5 And m 0 = π T 2 k -0.5 -1 Graph’s lower axis shows time/T ⎛ ⎞ t -1.5 π ⎜ ⎟ Upper axis shows phase 2 0 0.2 0.4 0.6 0.8 1 ⎝ ⎠ T t / T = fraction of period 30-Sept-2011 Physics 116 - Au11 10

  11. SHM’s connection to circular motion • Circular motion is periodic • Coordinate of a point on a circle is given by sin/cos functions • So x or y coordinate of object moving in a circle has exactly the same mathematical description as object in SHM – Plot the x coordinate of a pin on a turntable – and we… – Get the x coordinate of a mass on a spring with same period and A=R – Here’s a web applet that illustrates this: http://www.ngsir.netfirms.com/englishhtm/SpringSHM.htm 30-Sept-2011 Physics 116 - Au11 11

  12. Angular velocity in SHM and circular motion • We can use the mathematical equivalence of circular motion and SHM to find useful formulas about SHM θ = ω ( t ) t – The angular position of a peg on a turntable is just here θ is the total angle swept out, and ω is the angular velocity – ω (omega) is the rate of change of angle with time • (this assumes we accumulate the total number of radians the peg sweeps out, we do not reset to 0 radians whenever it passes its starting point) – We found that the x coordinate of the peg has the same form as in SHM: ⎛ ⎞ ⎛ ⎞ t = ⎜ π ⎟ ⎜ ⎟ x ( t ) A cos ⎜ 2 ⎟ ⎝ ⎠ ⎝ ⎠ T ⎛ ⎞ 1 π = π ⎜ ⎟ – Notice: 2 2 f ⎝ ⎠ T ( ) = ω ω = π x t ( ) A cos t – So if we define we can write 2 f ω = “angular frequency” – • number of radians per second of rotation, for peg on turntable • Nothing actually rotating in SHM, but we use ω = 2 π f anyway 30-Sept-2011 Physics 116 - Au11 12

  13. Velocity in SHM and circular motion • Recall from PHYS 114: – For uniform (constant ω ) circular motion • peg’s speed is v = R ω x component of v points in – x direction for 0 < θ < π radians • • From triangle shown, we can see v x = - (v sin ( θ ) ) so x component of velocity is v x = -R ω sin ( ω t) • θ v v y • So for SHM and circular motion we find: ⎛ ⎞ 1 π = π ⎜ ⎟ 2 2 f v x ⎝ ⎠ R y T θ ω = π 2 f x θ = ω ( t ) t ⎛ ⎞ ⎛ ⎞ t ( ) = π = ω ⎜ ⎜ ⎟ ⎟ x t ( ) A cos 2 A cos t ⎝ ⎠ ⎝ ⎠ T ( ) = − ω ω v t ( ) A sin t 30-Sept-2011 Physics 116 - Au11 13

  14. Acceleration in SHM and circular motion • Again recall from PHYS 114: – For uniform (constant ω ) circular motion • Centripetal acceleration has magnitude a = v 2 / R =(R ω) 2 / R = R ω 2 • Centripetal acceleration points toward center x component of a points in – x direction, for 0 < θ < π/2 radians • • From triangle shown, we see x component a x = - a cos ( θ ) so x component of acceleration is a x (t)= R ω 2 cos ( ω t) • • So for both SHM and circular motion we find: a x ⎛ ⎞ 1 π = π ω = π ⎜ ⎟ θ 2 2 f 2 f ⎝ ⎠ T R a y θ θ = ω ( t ) t x ( ) = ω a x t ( ) A cos t ( ) = − ω ω v t ( ) A sin t ( ) = − ω ω 2 a t ( ) A cos t 30-Sept-2011 Physics 116 - Au11 14

  15. Phase relationships and max values • Maximum values occur when sin/cos = 1, so ( ) = = ω x t ( ) A cos t max x A ( ) = ω = − ω ω v t ( ) A sin t max v A ( ) = − ω ω = ω 2 2 a t ( ) A cos t max a A • x, v and a have phase relationships determined by their trig functions: cos, -sin and -cos, all with the same value of ( ω t ) so at t = 0, x = +max, v = 0, and a = - max. After t=0, x and v are 90 deg out of phase (¼ cycle shift) x and a are 180 deg out of phase (opposite signs – ½ cycle shift) 1.5 1 0.5 x=Acos(wt) x, v, a 0 v= - Awsin(wt) a= - Aw^2cos(wt) -0.5 -1 -1.5 0 0.25 0.5 0.75 1 t / T = fraction of period 30-Sept-2011 Physics 116 - Au11 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend