photon detection system pds and sn triggering
play

Photon Detection System (PDS) and SN triggering Pierre Lasorak 1 - PowerPoint PPT Presentation

Photon Detection System (PDS) and SN triggering Pierre Lasorak 1 Introduction Outline Introduction Final aim: What to expect from the PDS for SN triggering? Can we motivate from SN/DAQ point of view? Addition of reflective


  1. Photon Detection System (PDS) and SN triggering Pierre Lasorak 1

  2. Introduction Outline • Introduction • Final aim: • What to expect from the PDS for SN triggering? • Can we motivate from SN/DAQ point of view? • Addition of reflective foil on the cathode • Use of ARAPUCA / higher efficiency/granularity PDS • Photon detection in LAr • PDS hit level information • Clustering • Results • Other info: • MCC10 SN samples and geometry: 
 snb_timedep_dune10kt_1x2x6_snb_timedep_bkg_reco • Using Jason’s photon backtracker after recent fix (28th June) Pierre Lasorak 2 24/07/2018

  3. Introduction Photon detection in LAr • LAr scintillation, 2 components: e- Ar Ar 2 + 128 nm Recombination • Fast light from singlet Ar 2* state 35% 65% 7 ns Ar Ar Ar 2 * ar Ar+ • Slow light from triplet state (singlet) This photon signal e- event time t 0 for et 1.6 μs μ- reconstruction. 50% Ar 2 * Ar* The ratio of con 50% (triplet) s and from the two com Ar Self-Trapped th depends on βγ and can ai Exciton D. Whittington in particle identi Neutrino 2014 poster Fast Component τ ≈ 8 ns (29%) Intermediate Component τ ≈ 140 ns (8%) • Effect of HV, Slow Component τ ≈ 1.6 μ s (63%) Photoelectrons impurities can change (marginally?) the timing of the TallBo measurement different components. D. Whittington Neutrino 2014 poster Time [μs] Pierre Lasorak 3 24/07/2018

  4. Event Displays (Time and Space) Timing Timing Other (not BT) SN ν 2.4 n Hits APA energy: 12.5 MeV nHit: 8 ν 2.2 CPA • LArSoft event (full drift 
 Ar39 2 X: 116.7 Y: -431.0 Z: 1198.2 Neutron window) 1.8 Krypton Polonium 1.6 Radon • Hit time distribution: 1.4 Ar42 AllBackground 1.2 • Arrow: true time of generation All 1 0.8 • Histogram: timing of the optical hits 0.6 0.4 0.2 0 − 4 − 2 0 2 4 6 8 10 • Hit spatial distribution: Time [ s] µ SN SN ν ν • Pink line: wire hits backtracked to SN 𝜉 800 Y Position [cm] N opt hits: 16 N wire hits: 6 4 600 • Overlaid histogram: optical hits in the PDS backtracked to 3.5 SN 𝜉 400 3 200 2.5 • 10 scintillation bars / APA 0 2 • Red cross: true neutrino interaction position 200 − 1.5 All All 800 Y Position [cm] 400 − N opt hits: 1293 N wire hits: 386 1 35 600 30 600 − 0.5 400 energy: 24.6 MeV X Position: 232 cm ν 25 … With all the hits: 200 20 − 800 0 0 200 400 600 800 1000 1200 0 Z Position [cm] 15 200 − 10 − 400 5 − 600 ν energy: 24.6 MeV X Position: 232 cm − 800 0 0 200 400 600 800 1000 1200 Z Position [cm] Pierre Lasorak 4 24/07/2018

  5. Hit level Information • Full drift window Photon ~1k events Wire • OpHit • Unmatched hits: noise, 
 dark current Number of hits per drift window nEvent 3 10 2 10 Other (not BT) 10 SN ν APA CPA Ar39 Neutron Krypton 1 Polonium Radon Ar42 AllBackground All 1 − 10 3 1 2 − 10 1 10 10 10 nHit Pierre Lasorak 5 24/07/2018

  6. Hit level information Signal features • Efficiency: 1 or more optical hits from SN / N events one or more hit collection efficiency nHit / Event Drops the further CPA CPA • 1 45 you get from the 40 0.9 35 APA 30 0.8 25 0.7 Number of hits 20 • 15 0.6 scales linearly 10 0.5 with E 𝜉 APA 5 0 0 5 10 15 20 25 30 35 40 − 400 − 300 − 200 − 100 0 100 200 300 400 Energy [MeV] ν X position [cm] h_timing_relat one or more hit collection efficiency Top N optical hits Bottom Entries 17332 1 First hit + other 
 Edge effect, • Mean 1.149 0.25 Std Dev 1.349 fast light hits photons escape 0.95 0.2 0.9 0.15 Other 
 0.85 0.1 slow light hits 0.8 0.05 0.75 0 600 400 200 0 200 400 600 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 − − − Y position [cm] Time [ µ s] Pierre Lasorak 6 24/07/2018

  7. Clustering • I went ahead and clustered optical hits: Fraction of hits 1 • Reused the code from Alex Booth: • Timing: 800 ns (maybe too small wrt the simulations) 0.8 • Z position: 300 cm (1 APA) 0.6 • No Y clustering • Composition of the clusters: 0.4 • Biggest contributor of hit to tag as SN or not. 0.2 • Neutron is still the worst background • Background contributions are more evenly spread out → Pile up 0 0 1 2 3 4 5 6 7 8 9 10 is important! (Unlike for wire cluster where the main contributor Time [ s] µ is neutrons) average number of hits in cluster 10 signal optical clusters 1 background optical clusters − 1 10 Krypton AllBackground Other SNnu APA CPA Ar39 Neutron Polonium Radon Ar42 All Pierre Lasorak 7 24/07/2018

  8. Cluster properties h_ncluster_sign_opti • Splitting the SN events! Events Entries 1874 3 10 Mean 1.231 Std Dev 0.7394 • First pass, still trying to get better at clustering time properly. 2 10 • Number of background clusters is large without cuts 10 signal optical clusters 1 background optical clusters − 1 10 2 3 1 10 10 10 n clusters nClusters / Drift Windows 12m clusters!! Something smarter ~ Size of the 1x2x6 has to be done for the time → not appropriate for these studies h_width_sign_opti h_ywidth_sign_opti 5 10 Clusters Clusters Clusters Entries 2306 Entries 2306 Mean 489.2 Mean 545.8 5 10 5 10 Std Dev 321.3 Std Dev 297.6 4 10 4 10 4 10 3 10 3 10 3 10 2 10 2 10 2 10 10 10 10 1 1 1 − 1 − 1 − 1 10 10 10 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 1400 0 1 2 3 4 5 6 7 8 9 10 Z Width [cm] Y Width [cm] Time Width [ s] µ Pierre Lasorak 8 24/07/2018

  9. Clustering Efficiency • Clustering efficiency (no cut) 1 • Nhit (and n PEs) can be used to suppress 0.8 backgrounds 0.6 • Next: use 10, 12, 15, 17 hits as cut (still missing stats to go further) 0.4 0.2 0 h_nhit_sign_opti 5 10 15 20 25 30 Clusters E ν [MeV] Entries 2306 Mean 13.61 5 10 Std Dev 13.34 signal optical clusters h_npe_sign_opti 4 10 Clusters Entries 2307 5 10 Mean 10.17 Std Dev 6.979 3 background optical clusters 10 4 10 3 2 10 10 2 10 10 10 1 1 − 1 10 0 10 20 30 40 50 60 70 80 90 1 − 10 0 2 4 6 8 10 12 14 16 18 20 n Hits n PEs Pierre Lasorak 9 24/07/2018

  10. Results Number of Clusters in Time Window Required to Trigger vs. Trigger Rate Individual Marley Eff & 10kt Bkgd Rate Trigger Rate, (Hz) 2 10 10 Optical Custers (nHit>= 10): - Eff: 0.57 & Bkgd rate: 100.05 Hz (5 s timing window) 1 − 1 10 Optical Custers (nHit>= 12): - Eff: 0.51 & Bkgd rate: 25.48 Hz (5 s timing window) − 2 10 − 3 10 Optical Custers (nHit>= 15): - Eff: 0.43 & Bkgd rate: 1.85 Hz (5 s timing window) − 4 10 1/Day 5 − 10 Optical Custers (nHit>= 17): - Eff: 0.38 & Bkgd rate: 0.93 Hz (5 s timing window) 1/Week − 6 10 1/Month − 7 10 Wire Clusters - Eff: 0.58 & Bkgd rate: 0.10 Hz (5 s timing window) − 8 10 − 9 10 Wire Clusters - Eff: 0.58 & Bkgd rate: 0.10 Hz (10 s timing window) 2 1 10 10 Number of Clusters/Time Window Galactic Neighbourhood Coverage, Fake Trigger Rate 1/Month Galactic Neighbourhood Coverage, Fake Trigger Rate 1/Month • Use a 5s timing window to count the number of − 1 10 Efficiency x SN Probability clusters • Can trigger on almost all of the milky way using only 2 − 10 PDS info! 3 − 10 • Trying to get to the LMC where you get 10-20 events. − 4 10 − 5 10 0 10 20 30 40 50 SN Distance, (kpc) Pierre Lasorak 10 24/07/2018

  11. Conclusion Future work • First pass at using PDS for SN trigger • Basic simple clustering implemented (needs improvement) • Currently can trigger on Milky Way SN but not on the 20% of SN coming from LMC • 1x2x6 geometry is not really big enough to avoid bias in PDS (light leaks out sides) • Photons travel far → triggering cannot be done so efficiently on the APA level (few APAs at least). • The slow component of the light is important. • Future work • Motivate improved design for the PDS: • Consider the addition of reflective foil on the cathode • More granular/efficient detector can do better? • Combine PDS with wire information at the trigger level? Pierre Lasorak 11 24/07/2018

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend