photodoped charge transfer insulators
play

Photodoped charge transfer insulators Denis Gole CCQ, Flatiron - PowerPoint PPT Presentation

Photodoped charge transfer insulators Denis Gole CCQ, Flatiron Institute Taming Non-Equilibrium Systems: from Quantum Fluctuation to Decoherence, July 2019 1/ 59 Mott insulators Failure of band theory Strong electron-electron


  1. Photodoped charge transfer insulators Denis Golež CCQ, Flatiron Institute Taming Non-Equilibrium Systems: from Quantum Fluctuation to Decoherence, July 2019 1/ 59

  2. Mott insulators ◮ Failure of band theory ◮ Strong electron-electron interaction ◮ Hubbard model and Mott gap ◮ Metal-insulator transition c † � � H = − t i ,σ c j ,σ + U n i ↓ n i ↑ < i , j >σ i 2/ 59

  3. Charge transfer insulators ◮ Multi band physics 3/ 59

  4. Charge transfer insulators ◮ Multi band physics ◮ Zaanen-Sawatzky-Allen diagram CTI ∆<0 Mott F. Gebhard, The Mott Metal-Insulator Transition 4/ 59

  5. Charge transfer insulators ◮ Multi band physics ◮ Zaanen-Sawatzky-Allen diagram F. Gebhard, The Mott Metal-Insulator Transition 5/ 59

  6. Pump-probe on Mott insulators ◮ Use strong laser pulses to photo-excite charge carriers ◮ Delayed probe pulse (optics, photo-emission, RIXS, . . . ) 6/ 59

  7. Photo-excitation of Mott insulators - II ◮ Use strong laser pulses to photo-excite charge carriers ◮ Mobile doublons and holons 7/ 59

  8. Relaxation ◮ Holon and doublon number conserved ◮ Role of bosonic modes ( spins, phonons, plasmons ) ◮ Kinetic processes Semsarna, et.al. PRB 82,224302(2010) Eckstein, et.al. PRB 035122 (2011) Lenarčič, et.al. PRL 111,016401 (2013) 8/ 59

  9. Thermalization ◮ Holon doublon recombination ◮ Exponentially suppressed - energy conservation ◮ Time scale separation between cooling and thermalization Semsarna, et.al. PRB 82,224302(2010) Eckstein, et.al. PRB 035122 (2011) Lenarčič, et.al. , PRL 111,016401 (2013) 9/ 59

  10. Goals ◮ Is multiband picture essential ? ◮ Properties of trapped states ◮ Role of collective modes: charge and spin screening 10/ 59

  11. Table of contents 11/ 59

  12. DMFT [ c † � � H = − t j c i + h . c . ] + U n i ↓ n i ↑ < i , j > i ◮ Hybridization function ∆( t , t ′ ) ◮ Local self-energy 1.0 0.5 ) ∆ ( ω 0.0 − 0.5 − 1.0 0 5 10 15 20 ω 12/ 59

  13. � ✄ DMFT [ c † � � H = − t j c i + h . c . ] + U n i ↓ n i ↑ < i , j > i ◮ Hybridization function ∆( t , t ′ ) ◮ Local self-energy 1.0 0.5 ) 0.0 ( ✂ 0.5 ✂ 1.0 0 5 10 15 20 ✁ 13/ 59

  14. DMFT and screening [ c † � � � H = − t j c i + h . c . ] + U n i ↓ n i ↑ + V n i n j < i , j > i < i , j > ◮ Hybridization function ∆( t , t ′ ) ◮ Effective interaction W ( t , t ′ ) ◮ Local self-energy and polarization 1.0 0.5 ) ∆ ( ω 0.0 − 0.5 V − 1.0 0 5 10 15 20 0.15 t 0.10 0.05 0.00 ( ) ω W -0.05 -0.10 -0.15 -0.20 0 5 10 15 20 25 30 14/ 59

  15. DMFT and screening [ c † � � � H = − t j c i + h . c . ] + U n i ↓ n i ↑ + V n i n j < i , j > i < i , j > ◮ Hybridization function ∆( t , t ′ ) ◮ Effective interaction W ( t , t ′ ) ◮ Local self-energy and polarization - EDMFT 1.0 0.5 ) ∆ ( ω 0.0 − 0.5 − 1.0 0 5 10 15 20 0.15 0.10 1 0.05 0.00 ( ) ω -0.05 W -0.10 --0.15 -0.20 -0.25 0 5 10 15 20 25 30 15/ 59

  16. Non-local fluctuations q k k Σ k = Σ EDMFT + Σ GW − Σ GW Σ GW (t,t ′ ) = k k − q t ′ t k loc Π k = Π EDMFT + Π GW k − q − Π GW k loc Π k (t,t ′ ) = t t ′ q 1. Effect of non-local fluctuations using GW+EDMFT References: ◮ Eq. implementation (Sun et.al. PRB 66,085120 (2002)) ◮ Full implementation (Ayral et.al. PRL 109, 226401 (2012) ) ◮ Non-equilibrium implementation (DG et.al. PRL 118,246402(2017)) ◮ Ab-initio for SrVO 3 (Boehnke et.al. PRB 94,201106(2016)) 16/ 59

  17. Phase diagram ◮ Role of multiband and screening ◮ Half-filled and high-temperatures J. Orenstein et.al. Science 228, 468(2000) 17/ 59

  18. Emery model H = H e + H kin + H int n p � n d � H e = ǫ d i + ( ǫ d + ∆ pd ) i , i i ,δ t αβ ij c † � � H kin = i ασ c j βσ , ij σ ( α,β ) ∈ ( d , p x , p y ) U αβ i n β � � ij n α H int = j , ij ( α,β ) ∈ ( d , p x , p y ) La 2 CuO 4 : U dd = 5 . 0 eV, U dp = 2 . 0 eV, t dp = 0 . 5 eV, t dd = − 0 . 1 eV, t pp = 0 . 15 eV, ∆ pd = − 3 . 5 eV 18/ 59

  19. Multiscale description ◮ Downfolding for Emery model ◮ d-orbital within DMFT and p-orbitals with computational cheaper approaches (HF,GW) 19/ 59

  20. Equilibrium spectrum ◮ Antibonding band - Zhang-Rice singlet ◮ Bonding band ◮ Upper Hubbard band 1.0 d-GW p-GW 0.8 d-HF p-HF 0.6 ) A ( 0.4 0.2 0.0 5 0 5 20/ 59

  21. Photo-excitation ◮ Transfer from p to d electrons ◮ Photo-induced double occupancy ◮ Number of holes on d orbital h d = ∆ d occ − 2∆ n p 0.025 0.10 d occ 0.000 n 0.05 0.025 = 6.0 0 20 40 60 20 40 60 t [fs] t [fs] 21/ 59

  22. PES ◮ Dynamical screening without importance Eq 0.6 0.6 , t ) HF 0.4 0.4 A ( 0.2 0.2 0.0 0.0 5 0 5 0.6 0.6 [eV] , t ) 0.4 0.4 GW A ( 0.2 0.2 0.0 0.0 5 0 5 [eV] 22/ 59

  23. t-PES ◮ Hartree shift due to electron-hole attraction ∆Σ H dd = ( U dd − 2 U dp )∆ n d t=36 fs 0.6 Eq , t ) 0.4 A ( 0.2 0.0 5 0 5 [eV] 23/ 59

  24. t-PES: dynamical screening t=36 fs 0.6 0.6 Eq , t ) HF 0.4 0.4 A ( 0.2 0.2 0.0 0.0 5 0 5 0.6 0.6 [eV] , t ) 0.4 0.4 GW A ( 0.2 0.2 0.0 0.0 5 0 5 [eV] 24/ 59

  25. Single band Mott insulator ◮ Minor reduction and broadening of the Hubbard gap ◮ Dynamical screening enhanced in multiband case Eq DG et.al. PRB 92,195123(2015) 25/ 59

  26. Optical conductivity ◮ Red shift ◮ Enhancement by dynamical screening 0.00 Eq 0.02 0.03 , t p ) 40 fs , t p ) 0.00 0.02 ( ( 0.02 0.01 0.00 0.0 2.5 5.0 0.0 2.5 5.0 [eV] [eV] 26/ 59

  27. Optical conductivity - experiment ◮ Pump probe on La 2 CuO 4 -transient reflectivity ◮ Above gap (3.5 eV) excitation 1 0.95 eV 3.1 eV 0 =0.05±0.05 ps –1 1.5 2.0 2.5 Energy (eV) Novelli et.al. Nat. Comm. 6112(2014) 27/ 59

  28. Optical conductivity ◮ Red shift ◮ Enhancement by dynamical screening ◮ Larger renormalization in experiment ◮ Effect of AFM Dyn Sta 28/ 59

  29. Screening Charge susceptibility Im [ χ ( t , ω )] 1. Photo-induced screening channel 2. Strong scattering with plasmons → broadening of spectrum 29/ 59

  30. Message I ◮ Strong band gap renormalization in charge-transfer insulators ◮ Importance of non-local fluctuations (dynamical screening) ◮ Effect of incoherent dynamics on experimental probes ◮ Similar results by hybrid time-dependent DFT: N. Tancogne-Dejean, et.al. PRL 121, 097402 (2018) N. Tancogne-Dejean, et.al. arXiv:1906.11316 30/ 59

  31. NiO 31/ 59

  32. Lattice structure ◮ Inter-penetrating antiferromagnetic planes ◮ AFM is dominant 32/ 59

  33. Electronic structure ◮ Two electrons in two e g -orbitals ◮ Excitations: magnons, Hund and CT excitations 33/ 59

  34. Electronic structure ◮ LDA + DMFT description J. Kunes, et.al. PRB 75, 165115 (2017) 34/ 59

  35. 2PPE - experiment ◮ Charge transfer excitation ◮ Surface states 4 3 C 2 S 1 0 V -1 O 2p -2 4 8 12 16 20 35/ 59

  36. 2PPE - experiment ◮ Charge transfer excitation ◮ Surface states 4 3 C 2 S 1 0 V -1 O 2p -2 4 8 12 16 20 36/ 59

  37. Pump-probe ◮ Pump h ν P =4.2 eV ◮ Ultra-fast relaxation ◮ Oscillating photo-induced in-gap state 37/ 59

  38. In-gap state ◮ Long-lived coherent dynamics of in-gap state ◮ Strongly damped at Neél temperature 38/ 59

  39. In-gap state ◮ Long-lived coherent dynamics of in-gap state ◮ Strongly damped at Neél temperature 39/ 59

  40. Modeling ◮ String states 40/ 59

  41. Modeling ◮ Ground state: High-spin AFM ◮ Photo-induced triplon and hole ◮ String states 41/ 59

  42. Multiband model ◮ Neglect excitonic effects ◮ Mapping to two-band t-J problem (Zhang-Rice construction) ◮ Atomic, kinetic and AFM contribution H = ˆ H loc + H kin + H ex (1) 42/ 59

  43. Multiband model Local excitations T ◮ Kanamori interaction for d orbitals triplon states (d 9 L -1 ) ◮ J H =1 eV J 3H S0 ♭ in-gap state (d* 8 L) ◮ Hubbard and Hund physics J 2H ◮ Ground state: high-spin state S0 J H ◮ Solve within DMFT S1 0 ground state (d 8 L) ( U ′ − J H δ σσ ′ ) n i ασ n i βσ ′ ˆ � � � � H loc = U n i ,α ↑ n i α ↓ − µ ˜ n i ασ + i ,α i ασ i ,α<β σ,σ ′ � c † c † c † c † � � + γ J H ˜ i α ↑ ˜ i α ↓ ˜ c i β ↓ ˜ c i β ↑ + ˜ i α ↑ ˜ i β ↓ ˜ c i α ↓ ˜ c i β ↑ i ,α<β (2) c † c † � � H kin = − t 0 (˜ ia σ ˜ c ja σ + ˜ ja σ ˜ c ia σ ) (3) a σ � i , j � 43/ 59

  44. Multiband model Local excitations T triplon states (d 9 L -1 ) J 3H S0 ♭ ◮ Superexchange interaction J ex J 2H in-gap state (d* 8 L) ◮ Mean-field approximation S0 J H J ex S1 ♭ S1 0 ground state (d 8 L) � � H ex = J ex S ia · S ja + S ib · S jb → J ex S ia · � S ja � + � S ib � · S jb � ij � � ij � (4) 44/ 59

  45. PES - theory 1.0 5 0.8 4 0.6 ω[eV] ◮ Photo-induced in-gap state 0.4 3 ◮ Hund excitation 0.2 2 0.0 1 t= 60 fs Eq 10 -4 10 -2 0 50 A(ω,t) t [fs] 45/ 59

  46. PES - theory ◮ Photo-induced in-gap state 1.0 5 ◮ Hund excitation 0.8 4 0.6 ω[eV] 0.4 3 PES PES 0.2 2 0.0 1 t= 60 fs Eq PES 10 -4 10 -2 0 50 A(ω,t) t [fs] H. Strand, et.al. PRB 96, 165104 (2017) 46/ 59

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend