phil309p methods in philosophy politics and economics
play

PHIL309P Methods in Philosophy, Politics and Economics Eric Pacuit - PowerPoint PPT Presentation

PHIL309P Methods in Philosophy, Politics and Economics Eric Pacuit University of Maryland 1 / 16 Cardinal Utility Theory u : X R Which comparisons are meaningful? 1. u ( x ) and u ( y ) ? (ordinal utility) 2 / 16 Cardinal Utility Theory


  1. PHIL309P Methods in Philosophy, Politics and Economics Eric Pacuit University of Maryland 1 / 16

  2. Cardinal Utility Theory u : X → R Which comparisons are meaningful? 1. u ( x ) and u ( y ) ? (ordinal utility) 2 / 16

  3. Cardinal Utility Theory u : X → R Which comparisons are meaningful? 1. u ( x ) and u ( y ) ? (ordinal utility) 2. u ( x ) − u ( y ) and u ( a ) − u ( b ) ? 2 / 16

  4. Cardinal Utility Theory u : X → R Which comparisons are meaningful? 1. u ( x ) and u ( y ) ? (ordinal utility) 2. u ( x ) − u ( y ) and u ( a ) − u ( b ) ? 3. u ( x ) and 2 ∗ u ( z ) ? 2 / 16

  5. Ordinal vs. Cardinal Utility Ordinal scale : Qualitative comparisons of objects allowed, no information about differences or ratios. 3 / 16

  6. Ordinal vs. Cardinal Utility Ordinal scale : Qualitative comparisons of objects allowed, no information about differences or ratios. Cardinal scales : Interval scale : Quantitative comparisons of objects, accurately reflects differences between objects. E.g., the difference between 75 ◦ F and 70 ◦ F is the same as the difference between 30 ◦ F and 25 ◦ F However, 70 ◦ F ( = 21 . 11 ◦ C) is not twice as hot as 35 ◦ F ( = 1 . 67 ◦ C). 3 / 16

  7. Ordinal vs. Cardinal Utility Ordinal scale : Qualitative comparisons of objects allowed, no information about differences or ratios. Cardinal scales : Interval scale : Quantitative comparisons of objects, accurately reflects differences between objects. E.g., the difference between 75 ◦ F and 70 ◦ F is the same as the difference between 30 ◦ F and 25 ◦ F However, 70 ◦ F ( = 21 . 11 ◦ C) is not twice as hot as 35 ◦ F ( = 1 . 67 ◦ C). Ratio scale : Quantitative comparisons of objects, accurately reflects ratios between objects. E.g., 10lb ( = 4 . 53592 kg ) is twice as much as 5lb ( = 2 . 26796 kg ). 3 / 16

  8. Cardinal Utility Theory x ≻ y ≻ z is represented by both ( 3 , 2 , 1 ) and ( 1000 , 999 , 1 ) , so we cannot say y whether is “closer” to x than to z . 4 / 16

  9. Cardinal Utility Theory x ≻ y ≻ z is represented by both ( 3 , 2 , 1 ) and ( 1000 , 999 , 1 ) , so we cannot say y whether is “closer” to x than to z . Key idea: Ordinal preferences over lotteries allows us to infer a cardinal (interval) scale (with some additional axioms). John von Neumann and Oskar Morgenstern. The Theory of Games and Economic Behavior . Princeton University Press, 1944. 4 / 16

  10. A Choice Take or Gamble ? R Take Gamble B B W S 0 . 5 0 . 5 R S [ B : 1 ] ∼ [ R : p , S : 1 − p ] 5 / 16

  11. A Choice Take or Gamble ? R Take Gamble B B W S 0 . 5 0 . 5 R S [ B : 1 ] ∼ [ R : p , S : 1 − p ] 5 / 16

  12. A Choice Take or Gamble ? R Take Gamble B B W S 0 . 5 0 . 5 R S [ B : 1 ] ∼ [ R : p , S : 1 − p ] 5 / 16

  13. A Choice Take or Gamble ? R Take Gamble B B W p 1 − p S R S [ B : 1 ] ∼ [ R : p , S : 1 − p ] 5 / 16

  14. A Choice Take or Gamble ? R Take Gamble B B W p 1 − p S R S [ B : 1 ] ∼ [ R : p , S : 1 − p ] 5 / 16

  15. A Choice Take or Gamble ? R Take Gamble B B W p 1 − p S R S 1 ∗ u ( B ) = p ∗ u ( R ) + ( 1 − p ) ∗ u ( S ) 5 / 16

  16. A Choice Take or Gamble ? R Take Gamble B B W p 1 − p S R S u ( B ) = p ∗ 1 + ( 1 − p ) ∗ 0 = p 5 / 16

  17. Lotteries Suppose that X = { x 1 , . . . , x n } is a set of outcomes. A lottery over X is a tuple [ x 1 : p 1 , x 2 : p 2 , . . . , x n : p n ] where � i p i = 1. 6 / 16

  18. Lotteries Suppose that X = { x 1 , . . . , x n } is a set of outcomes. A lottery over X is a tuple [ x 1 : p 1 , x 2 : p 2 , . . . , x n : p n ] where � i p i = 1. p 1 p 2 p n − 1 p n · · · x 1 x 2 x n − 1 x n We identify an element x ∈ X with the lottery [ x : 1 ] ∈ L 6 / 16

  19. Let L be the set of lotteries. Suppose that �⊆ L × L is a represents a decision maker’s (rational) preferences on L . What properties should � satisfy? 7 / 16

  20. Let L be the set of lotteries. Suppose that �⊆ L × L is a represents a decision maker’s (rational) preferences on L . What properties should � satisfy? Fact . If � is complete and transitive (plus another condition since L is infinite), then there is a U : L → R such that L � L ′ iff U ( L ) ≥ U ( L ′ ) 7 / 16

  21. Let L be the set of lotteries. Suppose that �⊆ L × L is a represents a decision maker’s (rational) preferences on L . What properties should � satisfy? Fact . If � is complete and transitive (plus another condition since L is infinite), then there is a U : L → R such that L � L ′ iff U ( L ) ≥ U ( L ′ ) For any lottery L = [ x 1 : p 1 , . . . , x n : p n ] , we would like to show that U ( L ) = � n k = 1 p k U ( x k ) . 7 / 16

  22. Independence Axiom 8 / 16

  23. < 9 / 16

  24. < 9 / 16

  25. = 9 / 16

  26. = 9 / 16

  27. = 9 / 16

  28. > 9 / 16

  29. > 9 / 16

  30. L = [ A 1 : p 1 , A 2 : p 2 , A 3 : p 3 ] A 1 A 2 A 3 u ( A 1 ) p 1 p 2 p 3 p 1 p 1 + p 2 p 1 + p 2 + p 3 0 10 / 16

  31. L = [ A 1 : p 1 , A 2 : p 2 , A 3 : p 3 ] A 1 A 2 A 3 u ( A 1 ) p 1 p 2 p 3 p 1 p 1 + p 2 p 1 + p 2 + p 3 = 1 0 10 / 16

  32. L = [ A 1 : p 1 , A 2 : p 2 , A 3 : p 3 ] A 1 A 2 A 3 u ( A 1 ) p 1 p 2 p 3 p 1 p 1 + p 2 p 1 + p 2 + p 3 = 1 0 10 / 16

  33. L = [ A 1 : p 1 , A 2 : p 2 , A 3 : p 3 ] A 1 A 2 A 3 u ( A 1 ) p 2 p 3 p 1 p 1 + p 2 p 1 + p 2 + p 3 = 1 0 10 / 16

  34. L = [ A 1 : p 1 , A 2 : p 2 , A 3 : p 3 ] A 1 A 3 u ( A 1 ) A 2 p 3 p 1 p 1 + p 2 p 1 + p 2 + p 3 = 1 0 10 / 16

  35. L = [ A 1 : p 1 , A 2 : p 2 , A 3 : p 3 ] A 1 u ( A 1 ) A 2 A 3 p 1 p 1 + p 2 p 1 + p 2 + p 3 = 1 0 10 / 16

  36. L = [ A 1 : p 1 , A 2 : p 2 , A 3 : p 3 ] u ( A 1 ) u ( A 2 ) p 1 ∗ u ( A 1 ) p 2 ∗ u ( A 2 ) u ( A 3 ) p 3 ∗ u ( A 3 ) p 1 p 1 + p 2 p 1 + p 2 + p 3 = 1 0 10 / 16

  37. L = [ A 1 : p 1 , A 2 : p 2 , A 3 : p 3 ] u ( A 1 ) u ( A 2 ) p 1 ∗ u ( A 1 ) p 2 ∗ u ( A 2 ) u ( A 3 ) p 3 ∗ u ( A 3 ) p 1 p 1 + p 2 p 1 + p 2 + p 3 = 1 0 0 1 10 / 16

  38. L = [ A 1 : p 1 , A 2 : p 2 , A 3 : p 3 ] u ( A 2 ) p 2 ∗ u ( A 2 ) u ( A 3 ) p 3 ∗ u ( A 3 ) p 1 p 1 + p 2 p 1 + p 2 + p 3 = 1 0 10 / 16

  39. L = [ A 1 : p 1 , A 2 : p 2 , A 3 : p 3 ] u ( A 2 ) p 1 p 1 + p 2 p 1 + p 2 + p 3 = 1 0 10 / 16

  40. [ A 1 : p 1 , A 2 : p 2 , A 3 : p 3 ] [ A 1 : p 1 , B 2 : p 2 , B 3 : p 3 ] u ( A 2 ) u ( A 2 ) p 1 p 1 p 1 + p 2 p 1 + p 2 + p 3 = 1 p 1 + p 2 p 1 + p 2 + p 3 = 1 0 0 [ A 1 : p 1 , B 2 : p 2 , B 3 : p 3 ] ≻ [ A 1 : p 1 , B 2 : p 2 , B 3 : p 3 ] iff [ B 2 : p 2 , B 3 : p 3 ] ≻ [ B 2 : p 2 , B 3 : p 3 ] 10 / 16

  41. [ A 1 : p 1 , A 2 : p 2 , A 3 : p 3 ] [ A 1 : p 1 , B 2 : p 2 , B 3 : p 3 ] u ( A 2 ) u ( A 2 ) p 1 p 1 p 1 + p 2 p 1 + p 2 + p 3 = 1 p 1 + p 2 p 1 + p 2 + p 3 = 1 0 0 [ A 1 : p 1 , A 2 : p 2 , A 3 : p 3 ] ≻ [ A 1 : p 1 , B 2 : p 2 , B 3 : p 3 ] iff [ B 2 : p 2 , B 3 : p 3 ] ≻ [ B 2 : p 2 , B 3 : p 3 ] 10 / 16

  42. [ A 1 : p 1 , A 2 : p 2 , A 3 : p 3 ] [ A 1 : p 1 , B 2 : p 2 , B 3 : p 3 ] u ( A 2 ) u ( A 2 ) p 1 p 1 p 1 + p 2 p 1 + p 2 + p 3 = 1 p 1 + p 2 p 1 + p 2 + p 3 = 1 0 0 [ A 1 : p 1 , A 2 : p 2 , A 3 : p 3 ] ≻ [ A 1 : p 1 , B 2 : p 2 , B 3 : p 3 ] iff [ A 2 : p ′ 2 , A 3 : p ′ 3 ] ≻ [ B 2 : p 2 , B 3 : p 3 ] 10 / 16

  43. [ A 1 : p 1 , A 2 : p 2 , A 3 : p 3 ] [ A 1 : p 1 , B 2 : p 2 , B 3 : p 3 ] u ( A 2 ) u ( A 2 ) p 1 p 1 p 1 + p 2 p 1 + p 2 + p 3 = 1 p 1 + p 2 p 1 + p 2 + p 3 = 1 0 0 [ A 1 : p 1 , A 2 : p 2 , A 3 : p 3 ] ∼ [ A 1 : p 1 , B 2 : p 2 , B 3 : p 3 ] iff [ A 2 : p ′ 2 , A 3 : p ′ 3 ] ∼ [ B 2 : p 2 , B 3 : p 3 ] 10 / 16

  44. [ A 1 : p 1 , A 2 : p 2 , A 3 : p 3 ] [ A 1 : p 1 , B 2 : p 2 , B 3 : p 3 ] u ( A 2 ) u ( A 2 ) p 1 p 1 p 1 + p 2 p 1 + p 2 + p 3 = 1 p 1 + p 2 p 1 + p 2 + p 3 = 1 0 0 [ A 1 : p 1 , A 2 : p 2 , A 3 : p 3 ] ≺ [ A 1 : p 1 , B 2 : p 2 , B 3 : p 3 ] iff [ A 2 : p ′ 2 , A 3 : p ′ 3 ] ≺ [ B 2 : p 2 , B 3 : p 3 ] 10 / 16

  45. [ A 1 : p 1 , A 2 : p 2 , A 3 : p 3 ] [ A 1 : p 1 , B 2 : p 2 , B 3 : p 3 ] u ( A 2 ) u ( A 2 ) p 1 p 1 p 1 + p 2 p 1 + p 2 + p 3 = 1 p 1 + p 2 p 1 + p 2 + p 3 = 1 0 0 [ A 1 : p 1 , A 2 : p 2 , A 3 : p 3 ] ≻ / ∼ / ≺ [ A 1 : p 1 , B 2 : q 2 , B 3 : q 3 ] iff [ A 2 : p ′ 2 , A 3 : p ′ 3 ] ≻ / ∼ / ≺ [ B 2 : q ′ 2 , B 3 : q ′ 3 ] 10 / 16

  46. [ A 1 : p 1 , A 2 : p 2 , A 3 : p 3 ] [ A 1 : p 1 , B 2 : p 2 , B 3 : p 3 ] u ( A 2 ) u ( A 2 ) p 1 p 1 p 1 + p 2 p 1 + p 2 + p 3 = 1 p 1 + p 2 p 1 + p 2 + p 3 = 1 0 0 [ A 1 : p 1 , A 2 : p 2 , A 3 : p 3 ] ≻ / ∼ / ≺ [ A 1 : p 1 , B 2 : q 2 , B 3 : q 3 ] iff [ A 2 : p ′ 2 , A 3 : p ′ 3 ] ≻ / ∼ / ≺ [ B 2 : q ′ 2 , B 3 : q ′ 3 ] 10 / 16

  47. Independence For all L 1 , L 2 , L 3 ∈ L and a ∈ ( 0 , 1 ] , L 1 ≻ L 2 if, and only if, [ L 1 : a , L 3 : ( 1 − a )] ≻ [ L 2 : a , L 3 : ( 1 − a )] . L 1 ∼ L 2 if, and only if, [ L 1 : a , L 3 : ( 1 − a )] ∼ [ L 2 : a , L 3 : ( 1 − a )] . 11 / 16

  48. Better Prizes Better prizes : When two lotteries are the same except for one outcome, then the decision maker prefers the lottery with the better outcome. p p ≻ 1 − p 1 − p a c c b ≻ 12 / 16

  49. Better Chances Better Chances : A decision maker prefers a better chance for a better prize a ≻ b p > q p 1 − p ≻ q 1 − q a a b b 13 / 16

  50. Better Chances a ≻ b p > q , so p = q + r and ( 1 − q ) = ( 1 − p ) + r for some r p ≻ q 1 − p 1 − q a a b b 13 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend