phase matching mdi qkd
play

Phase-Matching MDI-QKD Pei Zeng QCrypt 2018 Ma, Zeng and Zhou, - PowerPoint PPT Presentation

Phase-Matching MDI-QKD Pei Zeng QCrypt 2018 Ma, Zeng and Zhou, PRX.8.031043,(2018) Outline Motivation & background Protocol & security Practical issues & simulation Summary & outlook Motivation & Background


  1. Phase-Matching MDI-QKD Pei Zeng QCrypt 2018 Ma, Zeng and Zhou, PRX.8.031043,(2018)

  2. Outline • Motivation & background • Protocol & security • Practical issues & simulation • Summary & outlook

  3. Motivation & Background

  4. ? 𝑆 𝜃 𝜃 Alice Bob

  5. 𝑃(𝜃 2 ) = 𝑆 𝜃 Alice Bob ±𝛽 , ±𝑗𝛽 Huttner, Imoto, Gisin and Mor, PRA 51(3):1863 (1995) Lo and Preskill, QIC, 7, 431-458 (2007)

  6. 𝑃(𝜃 2 ) = 𝑆 𝑃(𝜃) 𝜃 Alice Bob ±𝛽 , ±𝑗𝛽 Decoy state method Lo, Ma and Chen, PRL 94, 230504 (2005)

  7. 𝑆 = 𝑃(𝜃) • Secret key capacity (SKC) bound • For all point-to-point QKD models 𝑆 ≤ − log 2 (1 − 𝜃) • Protocols beyond SKC model? • Alice and Bob both are sources/detectors Takeoka, Guha and Wilde, Nat. Comm. 5, 5235 (2014) Pirandola, Laurenza, Ottaviani, and Banchi, Nat. Comm. 8, 15043 (2017)

  8. 𝑆 = 𝑃(𝜃) ? E.g. BBM92 protocol Eve 𝜃 𝜃 00 + 11 Alice Bob 2 Coincident detection ⇒ 𝑆 = 𝑃 𝜃 = 𝑃(𝜃) Bennett, Brassard, and Mermin, PRL 68, 557 (1992)

  9. 𝑆 = 𝑃(𝜃) ? E.g. Polarization encoding MDI-QKD protocol Eve 𝜃 𝜃 Alice Bob 0 , 1 , |±⟩ 0 , 1 , |±⟩ 2 Coincident detection ⇒ 𝑆 = 𝑃 𝜃 = 𝑃(𝜃) Lo, Curty and Qi, PRL 108, 130503 (2012)

  10. 𝑆 = 𝑃(𝜃) ? E.g. “MDI - B92” protocol; Phase-matching type protocol • Unambiguous State Discrimination attack • 𝑄 𝑡𝑣𝑑 ∼ 𝑃(𝜈) 2 • 𝜈 ≤ 𝑃( 𝜃) , 𝑆 = 𝑃 𝜃 = 𝑃(𝜃) 𝜈 , − 𝜈 𝜈 , − 𝜈 Ferenczi, Ph.D Thesis, Lutkenhaus ’ group (2013)

  11. 𝑆 > 𝑃(𝜃) ! Twin-field QKD • Point out the potential of 𝑆 > 𝑃(𝜃) • BB84 type encoding, ±𝛽 , ±𝑗𝛽 • Introduce the decoy state method Lucamarini, Yuan, Dynes and Shields, Nature. 2018, 557(7705):400-403

  12. Protocol & security

  13. Phase-matching (MDI-)QKD 𝜈𝑓 𝑗 𝜚 𝑏 +𝜌𝜆 𝑏 𝜈𝑓 𝑗 𝜚 𝑐 +𝜌𝜆 𝑐 𝐵 𝐶 • Extension of “MDI - B92” protocol • Phase-reference should be matched • Detection matches the phases: Eve’s detection create a correlation between 𝜆 𝑏 , 𝜆 𝑐

  14. Random phase PM protocol: Entanglement-based view • Consider the post-selected signals with the same phase 𝜚 𝑎 − 𝐼 𝐹 𝜈 • 𝐿 = 1 − 𝐼 𝐹 𝜈 𝑌 • Key point: estimate the phase error 𝐹 𝜈 𝑌 Lo and Chau, Science 283, 2050 (1999) Shor and Preskill, PRL 85, 441 (2000)

  15. Ancillary protocol, decoy state • For 𝑙 photon number input: 𝑎 = 𝑓 𝑙 𝑌 • 𝑓 𝑙 if 𝑙 is odd 𝑎 = 1 − 𝑓 𝑙 𝑌 • 𝑓 𝑙 if 𝑙 is even 𝑎 , 𝑍 𝑎 • Decoy state to estimate 𝑓 𝑙 𝑙 • Estimate the overall phase error rate 𝑌 = ෍ 𝑌 𝐹 𝜈 𝑟 𝑙 𝑓 𝑙 𝑙

  16. Key rate and parameter estimation 𝑎 − 𝐼 𝐹 𝜈 𝑌 • 𝐿 = 𝑅 𝜈 1 − 𝐼 𝐹 𝜈 • 𝑅 𝜈 = 𝑃( 𝜃) • 𝑅 𝜈 = σ 𝑙 𝑞 𝑙 𝑍 𝑙 𝑎 = σ 𝑙 𝑟 𝑙 𝑓 𝑙 𝑌 ≤ 𝑟 0 𝑓 0 + 𝑟 1 𝑓 1 𝑎 + 𝑟 3 𝑓 3 𝑎 + (1 − 𝑟 0 − 𝑟 1 − 𝑟 3 ) 𝑎 • 𝐹 𝜈 • 𝐹 𝜈 𝑌 -- overall phase error rate; • 𝐹 𝜈 𝑌 = σ 𝑙 𝑟 𝑙 𝑓 𝑙 𝑌 • 𝐹 𝜈 • Phase announcement is critical, not commute with photon number measurement • Photon number channel model invalid: collective BS attack • Core observation: overall phase error rate is the same

  17. Practical issues & simulation

  18. Practical issues • Infinitesimal post-selection condition • Introduce phase slices • No effect on the security, just introduce intrinsic errors • Continuous phase randomization: hard • Discrete phase randomization is enough • Phase locking requirement • Alice and Bob can estimate the phase reference deviation of each round • Post-selection(Sifting) based on estimated phase difference; no feedback • Only requirement: the phase cannot fluctuate too quickly

  19. Performance of PM protocol • Consider all the practical factor: • Dark count: 8 ∗ 10 −8 • Detection efficiency: 14.5% • Sifting factor: 1/8 • Misalignment: ~1.5% • Error correction efficiency: 1.15 2 𝑎 − 𝐼 𝐹 𝜈 𝑌 • 𝐿 = 𝑁 𝑅 𝜈 1 − 𝑔𝐼 𝐹 𝜈 • Break the linear bound! Ma, Zeng and Zhou, PRX.8.031043,(2018)

  20. Summary & outlook

  21. Summary 𝑆 = 𝑃( 𝜃)

  22. Outlook 𝑆 = 𝑃 𝜃 ?

  23. Thanks! • Xiongfeng Ma: xma@tsinghua.edu.cn • Pei Zeng: qubitpei@gmail.com • Hongyi Zhou: zhouhy14@mails.tsinghua.edu.cn Xiongfeng Group, Center for Quantum Information, Tsinghua University

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend