pathways to discovering supernova neutrinos
play

Pathways to Discovering Supernova Neutrinos Thomas D. P . Edwards , - PowerPoint PPT Presentation

Pathways to Discovering Supernova Neutrinos Thomas D. P . Edwards , Sebastian Baum, Bradley J. Kavanagh, Patrick Stengel, Andrzej K. Drukier, Katherine Freese, Maciej Grski, Christoph Weniger 1906.05800 1 Quantamagazine 2 Thomas D. P


  1. Pathways to Discovering Supernova Neutrinos Thomas D. P . Edwards , Sebastian Baum, Bradley J. Kavanagh, Patrick Stengel, Andrzej K. Drukier, Katherine Freese, Maciej Górski, Christoph Weniger 1906.05800 �1

  2. Quantamagazine �2 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  3. What are the Di fg erent Ways of Observing SN Neutrinos �3 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  4. What are the Di fg erent Ways of Observing SN Neutrinos Direct observation of a SN event in our Galaxy �3 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  5. What are the Di fg erent Ways of Observing SN Neutrinos Observing the Diffuse Direct observation of a background from SN SN event in our Galaxy throughout the Universe �3 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  6. What are the Di fg erent Ways of Observing SN Neutrinos Observing the collective Observing the Diffuse Direct observation of a emission of SN from background from SN SN event in our Galaxy within the galaxy throughout the Universe �3 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  7. <latexit sha1_base64="aTSxs8PLfXiUlDduWSlrkjQ3VWk=">ACOHicbVDLSgMxFM3Ud31VXboJFqFuykwVdCmK4EZ8YFXo1CGTZtrQzMPkjlDCfJYbP8OduHGhiFu/wExbQVsPhBzOZfkHj8RXIFtP1uFicmp6ZnZueL8wuLScml9UrFqaSsTmMRyxufKCZ4xOrAQbCbRDIS+oJd+93D3L+Z1LxOLqEXsKaIWlHPOCUgJG80mnxyNMXGXYFu8M17AaSUB162qUdnt3qWoZPH2ZdoEAqj8OAPVlbzdga08luH7/Cp6pbJdtfvA48QZkjIa4swrPbmtmKYhi4AKolTDsRNoaiKBU8GyopsqlhDaJW3WMDQiIVN3V8w5tGaeEgluZEgPvq7wlNQqV6oW+SIYGOGvVy8T+vkUKw19Q8SlJgER08FKQCQ4zFnGLS0ZB9AwhVHLzV0w7xHQHpu8BGd05XFyVas629Xa+U5/2BYxyxaRxuoghy0i/bRMTpDdUTRA3pBb+jderRerQ/rcxAtWMOZNfQH1tc3Qgmstw=</latexit> Typical Recoil Energies for SN Neutrinos • Recoil energy of a collision is O(1) KeV - very DSNB 10 2 small energy deposit to detect galactic d φ /dE ν [cm − 2 s − 1 MeV − 1 ] • Although neutrinos have a small mass, there 10 1 increased velocities lead to O(1-10) KeV recoils E R ≤ 2 m 2 χ M T 10 0 ( m χ M T ) 2 v 2 10 − 1 10 − 1 10 0 10 1 10 2 E ν [MeV] �4 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  8. Small Damage Track Features can be Observed in Minerals • Paleo-detectors are minerals from far below the Earths surface (5-10 km) . Importantly they are 1 billion years old • Permanent damage track features in the structure of the mineral. �5 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  9. <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> Basics of Building a Detector: Mass vs Exposure Recoil Rate ∝ Target Mass × Observation Time �6 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  10. <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> Basics of Building a Detector: Mass vs Exposure Recoil Rate ∝ Target Mass × Observation Time Smallish Huge Targets Exposure �6 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  11. <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> Basics of Building a Detector: Mass vs Exposure Recoil Rate ∝ Target Mass × Observation Time �7 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  12. <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> Basics of Building a Detector: Mass vs Exposure Recoil Rate ∝ Target Mass × Observation Time Small Targets Huge Exposure �7 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  13. Reading the Tracks: X-ray Tomography Holler et al. 14 �8 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  14. Cosmic Rays Induce Large Backgrounds Depth [km] 2 5 7.5 10 Neutron Flux 10 3 10 1 10 -4 10 -8 [1/cm 2 /Gpc] �9 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  15. <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> Natural Radioactivity: Single alphas • Natural radioactivity , most importantly Uranium-238 causes multiple backgrounds β − β − α α 238 U → 234 Th → 234m Pa → 234 U → 230 Th − − − − α α α → 226 Ra → 222 Rn → 206 Pb − − − → . . . − �10 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  16. <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> Natural Radioactivity: Single alphas • Natural radioactivity , most importantly Uranium-238 causes multiple backgrounds β − β − α α 238 U → 234 Th → 234m Pa → 234 U → 230 Th − − − − α α α → 226 Ra → 222 Rn → 206 Pb − − − → . . . − • Half life of the second alpha in the decay chain is 10 5 yr • Alpha does not leave a track, but the daughter nucleus does �10 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  17. Natural Radioactivity: Spontaneous Fission • Sometimes uranium spontaneously splits into two lighter nuclei, whilst emitting fast neutrons • These neutrons cause many well separated tracks - huge background �11 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  18. Natural Radioactivity: Spontaneous Fission • Sometimes uranium spontaneously splits into two lighter nuclei, whilst emitting fast neutrons • These neutrons cause many well separated tracks - huge background Epsomite; C 238 = 0.01 ppb 10 6 dR/dx [nm − 1 kg − 1 Myr − 1 ] Galactic SN n -bkg ν -bkg 234 Th-bkg 10 4 10 2 10 0 10 − 2 10 − 4 10 1 10 2 10 3 x [nm] �11 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  19. <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> Natural Radioactivity: Spontaneous Fission • Sometimes uranium spontaneously splits into two lighter nuclei, whilst emitting fast neutrons • These neutrons cause many well separated tracks - huge background Epsomite; C 238 = 0.01 ppb 10 6 dR/dx [nm − 1 kg − 1 Myr − 1 ] Galactic SN n -bkg ν -bkg 234 Th-bkg 10 4 10 2 10 0 10 − 2 10 − 4 10 1 10 2 10 3 x [nm] Uranium-238 Concentration ∼ 0 . 01 ppb �11 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  20. <latexit sha1_base64="BSpmwxdNpOUipiE4IFbPgvj8m8=">ACNXicbVDLSsNAFJ34rPUVdelmsAhCoSRV0GXRjQsXFewDmlgmk0k7dDIJMxOlhPyUG/DlS5cKOLWX3DSVqtBwbOnHMv97jxYxKZVkvxsLi0vLKamGtuL6xubVt7uw2ZQITBo4YpFoe0gSRjlpKoYaceCoNBjpOUNLnK/dUeEpBG/UcOYuCHqcRpQjJSWuaVEyLVF2EaZ+UphY6gvb5CQkT38Ef2pxUku03L+suTbjrVsq5ZsirWCHCe2BNSAhPUu+aT40c4CQlXmCEpO7YVKzdFQlHMSFZ0EklihAeoRzqachQS6ajqzN4qBUfBpHQjys4Un93pCiUch6ujJfUc56ufif10lUcOamlMeJIhyPBwUJgyqCeYTQp4JgxYaICyo3hXiPhIKx10UYdgz548T5rVin1cqV6flGrnkzgKYB8cgCNg1NQA5egDhoAgwfwDN7Au/FovBofxue4dMGY9OyBPzC+vgHc16D</latexit> Background Neutrinos: Solar and Atmospheric p + p → d + e + + ν e Epsomite; C 238 = 0.01 ppb 10 6 dR/dx [nm − 1 kg − 1 Myr − 1 ] Galactic SN n -bkg ν -bkg 234 Th-bkg 10 4 10 2 10 0 10 − 2 10 − 4 10 1 10 2 10 3 x [nm] �12 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  21. <latexit sha1_base64="BSpmwxdNpOUipiE4IFbPgvj8m8=">ACNXicbVDLSsNAFJ34rPUVdelmsAhCoSRV0GXRjQsXFewDmlgmk0k7dDIJMxOlhPyUG/DlS5cKOLWX3DSVqtBwbOnHMv97jxYxKZVkvxsLi0vLKamGtuL6xubVt7uw2ZQITBo4YpFoe0gSRjlpKoYaceCoNBjpOUNLnK/dUeEpBG/UcOYuCHqcRpQjJSWuaVEyLVF2EaZ+UphY6gvb5CQkT38Ef2pxUku03L+suTbjrVsq5ZsirWCHCe2BNSAhPUu+aT40c4CQlXmCEpO7YVKzdFQlHMSFZ0EklihAeoRzqachQS6ajqzN4qBUfBpHQjys4Un93pCiUch6ujJfUc56ufif10lUcOamlMeJIhyPBwUJgyqCeYTQp4JgxYaICyo3hXiPhIKx10UYdgz548T5rVin1cqV6flGrnkzgKYB8cgCNg1NQA5egDhoAgwfwDN7Au/FovBofxue4dMGY9OyBPzC+vgHc16D</latexit> Background Neutrinos: Solar and Atmospheric p + p → d + e + + ν e Epsomite; C 238 = 0.01 ppb 10 6 dR/dx [nm − 1 kg − 1 Myr − 1 ] Galactic SN n -bkg ν -bkg 234 Th-bkg 10 4 10 2 10 0 10 − 2 10 − 4 10 1 10 2 10 3 x [nm] �12 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend