parallel parking a car
play

Parallel parking a car - PDF document

Parallel parking a car y


  1. Parallel parking a car � � ✟✟✟✟✟✟ Φ � ✻ � ✟✟✟✟✟✟✟ ✟✟✟✟✟✟ � ❆ � � � ❆ Θ ❆ ✟ ✟ ✟ y ✟ ✟ � ✟ � ✟✟✟✟✟✟ � ❆ ❆ ✟ ✟ ✟ ✟ ✟ ✟ ❆ The states of the system (simplified model – correct for bicycle) ✲ x  x, y coordinates of center of car         speed  v    states Θ orientation of the car          Φ steering angle     acceleration a      inputs    ω angular velocity of steering wheel  ( “controls” )   (about a vertical axis)       x = v cos Θ ˙           y = v sin Θ ˙     Equations    v = a ˙ (= u 1 ) of motion     ˙  Θ = v sin Φ        ˙   Φ = ω (= u 2 )    This is not a standard dynamical system. Instead: This is a controlled dynamical system . 4

  2. Parallel parking a car   x = v cos Θ ˙           y = v sin Θ ˙          v = a ˙ (= u 1 )     ˙  Θ = v sin Φ          ˙  Φ = ω (= u 2 )      Written in standard as a multi-input control system  � 2  z = f 0 ( z ) + ˙ j =1 u j f j ( z )        z ∈ M 5 = R 3 × S 1 × S 1         u ∈ [ − a max , a max ] × [ − ω max , ω max ]     with drift vector field ∂ ∂ ∂ f 0 = z 3 cos z 4 + z 3 sin z 4 + z 3 sin z 5 , ∂z 1 ∂z 2 ∂z 4 and controlled fields f 1 = ∂ f 2 = ∂ , and . ∂z 3 ∂z 5 For every choice of controls u 1 ( t ) , u 2 ( t ) (that are locally integrable) one obtains an ordinary dynamical system. 5

  3. Easiest example: Piecewise constant controls in this simple cascade system Control inputs : Blue: For/backward acceleration u 1 Red: Angular velocity of steering wheel u 2 States : � u 1 Black: For/backward speed v = � u 2 . Magenta: Steering angle Φ = � v sin Φ. Brown: Orientation of the car Θ = Green: x -component of velocity v x = v cos Θ Cyan: y -component of velocity v y = v sin Θ v (0) = Φ(0) = Θ(0) = x (0) = y (0) = 0 = v ( t ) = Φ( t ) = Θ( t ) = x ( t ) Θ( t 1 ) � �� � � t � t 1 � t 1 � t 2 � t 2 y ( t ) = 0 u 1 ( t 2 ) dt 2 · sin ( 0 u 1 ( t 2 ) dt 2 · sin( 0 u 2 ( t 3 ) dt 3 ) dt 2 ) dt 1 0 0 � �� � � �� � � �� � v ( t 1 ) v ( t 2 ) Φ( t 2 ) 6

  4. Noncommuting flows Concatenate the solutions of the (standard) dynamical systems (controls normalized to ± 1) 0 ≤ t < T 1 z = f 0 ( z ) + f 1 ( x ) + f 2 ( z ) ˙ z = f 0 ( z ) + f 1 ( x ) − f 2 ( z ) ˙ T 1 ≤ t < T 2 z = f 0 ( z ) ˙ − f 2 ( z ) T 2 ≤ t < T 3 T 3 ≤ t < T 4 z = f 0 ( z ) − f 1 ( x ) − f 2 ( z ) ˙ T 4 ≤ t < T 5 z = f 0 ( z ) − f 1 ( x ) + f 2 ( z ) ˙ z = f 0 ( z ) − f 1 ( x ) − f 2 ( z ) ˙ T 5 ≤ t < T 6 z = f 0 ( z ) ˙ − f 2 ( z ) T 6 ≤ t < T 7 T 7 ≤ t < T 8 z = f 0 ( z ) + f 1 ( x ) − f 2 ( z ) ˙ z = f 0 ( z ) + f 1 ( x ) + f 2 ( z ) ˙ T 8 ≤ t < T 9 The flows do not commute. 1 z Most simple picture for: 0     1 0 1     0 x     f 1 ( x ) = f 2 ( x ) = 0 1 y     0         1 − y x 7

  5. Parking model is controllable       z 3 cos z 4 0 0             z 3 sin z 4 0 0                         f 0 ( z ) = f 1 ( z ) = f 2 ( z ) = Recall: 0 1 0                         z 3 sin z 5 0 0                   0 0 1       cos z 4 0 0             sin z 4 0 0                         [ f 1 , f 0 ]( x ) = [ f 2 , f 0 ]( x ) = [ f 2 , f 1 ]( x ) = 0 0 0                    sin z 5   z 3 cos z 5   0                    0 0 0     0 sin z 4          0   cos z 4              [ f 1 , [ f 2 , f 0 ]]( x ) = [[ f 1 , [ f 2 , f 0 ]] , [ f 1 , f 2 ]]( x ) = 0 0                 cos z 5 0             0 0 These iterated Lie brackets span the tangent space of R 5 at the origin – hence the system is accessible from 0. 10

  6. Manipulating exponential products Instead of working with complicated concatenations of flows like � t 9 � t 2 � t 1 t 8 ( f 0 + f 1 + f 2 ) dt ◦ . . . e t 1 ( f 0 + f 1 − f 2 ) dt ◦ e 0 ( f 0 + f 1 + f 2 ) dt ( p ) z ( t ) = e it is desirable to rewrite the solution curve using a minimal number of vector fields f π k that span the tangent space (typically using iterated Lie brackets of the system fields f 0 , f 1 , . . . f m ) Coordinates of the first kind z ( t ) = e b 1 ( t,u ) f π 1 + b 2 ( t,u ) f π 1 + b 3 ( t,u ) f π 3 + ... + b n ( t,u ) f πn ( p ) Coordinates of the second kind z ( t ) = e c 1 ( t,u ) f π 1 ◦ e c 2 ( t,u ) f π 1 ◦ e c 3 ( t,u ) f π 3 ◦ . . . ◦ e c n ( t,u ) f πn ( p ) Using the Campbell-Baker-Hausdorff formula , this is possible, but a book-keeping nightmare. Moreover, the CBH formula does not use a basis, but uses linear combinations of all possible iterated Lie brackets. Yet, by the Jacobi identity (and anticommutativity), in ever Lie algebra e.g. [ X, [ Y, [ X, Y ]]] + [ Y, [[ X, Y ] , X ] � ] + [[ X, Y ] , [ X, Y ]]] = 0 � �� and hence � �� � [ X, [ Y, [ X, Y ]]] = [ Y, [ X, [ X, Y ]]] Plan : • Work with bases for (free) Lie algebras. • Find useful formulae for the coefficients b k ( t, u ) or c k ( t, u ). 11

  7. The Chen Fliess series K. T. Chen, 1957: Geometric invariants of curves in R n M. Fliess, 1970s: adaptation to control The formal control system   m ˙ �  , u i X i S = S S (0) = I  i =1 on the associative algebra ˆ A ( X 1 . . . X m ) of formal power series in the noncommuting indeterminates (letters) X 1 , . . . X m has the unique solution � T � t 1 � t p − 1 � u i p ( t p ) . . . u i 1 ( t 1 ) dt 1 . . . dt p S CF ( T, u ) = X i 1 . . . X i p 0 · · · 0 0 I � �� � � �� � X I Υ I ( T,u ) What is the CF-series good for? For any given control system m � x = ˙ u i ( x ) f i ( x ) , x (0) = p, with “output” y = ϕ ( x ) i =1 � T � t 1 � t p − 1 � u i p ( t p ) . . . u i 1 ( t 1 ) dt 1 . . . dt p φ ( x ( T, u )) = ( f i 1 ◦ . . . ◦ f i p ϕ )( p ) 0 · · · 0 0 I � �� � Υ I ( T,u ) (uniform convergence for small T and IC’s on compacta [Sussmann, 1983]) The CF-series was basic tool for deriving many high-order conditions for controllability and optimality. [Hermes, Stefani, Sussmann, Kawski, ...] 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend