panel data analysis part iii modern moment estimation
play

Panel Data Analysis Part III Modern Moment Estimation James J. - PowerPoint PPT Presentation

Panel Data Analysis Part III Modern Moment Estimation James J. Heckman University of Chicago Econ 312, Spring 2019 Heckman Part III Review Moments and Identification: Y = X + U E ( U | X ) = 0 Cov ( Y X , X ) = 0


  1. Panel Data Analysis Part III – Modern Moment Estimation James J. Heckman University of Chicago Econ 312, Spring 2019 Heckman Part III

  2. Review Moments and Identification: • Y = X β + U • E ∗ ( U | X ) = 0 ⇒ Cov ( Y − X β, X ) = 0 • ⇒ ˆ β = ( X ′ X ) − 1 X ′ Y Heckman Part III

  3. Review Moments and Identification: • ( T × 1) = Y X β + U T × 1 ( T × K )( K × 1) • E ∗ ( U | X ) � = 0 • E ∗ ( U | Z ) = 0 • Z = M × K ( M ≥ K ) • E ∗ ( X | Z ) non-degenerate • ∴ Cov ( Z ′ X ) rank = K • Z ′ ( Y − X β ) = 0: These are the moments in GMM. • Z ′ Y = ( Z ′ X ) β if M = K • ˆ β = ( Z ′ X ) − 1 Z ′ Y otherwise GMM Heckman Part III

  4. • Suppose y it = β X it + η i + v it i = 1 , .., I • U it = η i + v it t = 1 , ..., T • X it is strictly exogenous if E ∗ ( U it | X T i ) = 0 ∀ t X T = ( X i 1 , ..., X iT ) i • .. OLS identifies β and E ∗ ( η i | X T . i ) = 0. • E ∗ is linear projection. Heckman Part III

  5. Panel Data Setting: • X it is strictly exogenous given η i if E ∗ ( v it | X T i , η i ) = 0 t = 1 , ..., T for all X T but not necessarily for U it i Heckman Part III

  6. Consequence: • First difference eliminates fixed effects: E ∗ ( v it − v i , t − 1 | X T i ) = 0. • Multivariate regression with cross equation restrictions. • Assume that this is essentially all the information. • Partial Adjustment Model With Strictly Exogenous Variable y it = α y i , ( t − 1) + β 0 X i , t + β 1 X i , t − 1 + η i + v it . • Assume E ∗ ( v it | X T i ) = 0 , t = 2 , ..., T . • Does not restrict serial correlation in v it . Heckman Part III

  7. Restrictions: • E ∗ (∆ v it | X T i ) = 0 . • Model identified for T ≥ 3 . • T = 3 case; acquire orthogonality restrictions E ( X is (∆ y i 3 − α ∆ y i 2 − β 0 ∆ X i 3 − β 1 ∆ X i 2 )) = 0 ⇔ E ( X is (∆ v i 3 )) = 0 , s = 1 , 2 , 3 • Use these in GMM to identify model. • 3 equations in 3 unknowns and we acquire exact identification. • Note: Strict exogeneity enables us to identify dynamic effect of X on y with arbitrary serial correlation in the errors; • Price: Assumes X not influenced by past values of y and v . Heckman Part III

  8. • Definition: X is predetermined if • E ∗ ( v it | X t i , y t − 1 ) = 0 , t = 2 , ..., T (A) i i ) , y t − 1 i , ..., y t − 1 • X t i = ( X 1 i , ..., X t = ( y 1 ). i i • Current shocks are uncorrelated with past values of y and current and past values of X . • Feedback from lagged dependent variables to future X not ruled out. • E.g., Euler equations. (Information set of agents uncorrelated with current and future idiosyncratic shocks but not past shocks). Heckman Part III

  9. Example: Euler Equation: U t � c ( c t ) � ( c t − 1 ) β R t | I t − 1 = 1 E U t − 1 c • β = subjective discount rate • R t = 1 + r t = period plus interest rate Heckman Part III

  10. Special Case Power Utility: U t = ( c t ) 1 − γ − 1 ; U c , t = ( c t ) − γ 1 − γ �� c t � � − γ E β R t | I t − 1 = 1 c t − 1 Heckman Part III

  11. • Z t − 1 is in the information set. • Crucial that instruments don’t include variables that cause the innovation. � � �� � − γ � • E t − 1 C t Z t − 1 β R t − 1 = 0 C t − 1 • β C − γ t − 1 R t − 1 = ε t t C − γ � � � � C − γ C − γ • ε t = β − t − 1 R t +1 − 1 ( C t − 1 ) − γ R t − 1 t E t − 1 t C − γ • ε t is forecast error. • E ( ε t Z t − 1 ) = 0. • Z t has to be relevant in forecasting future returns or consumption growth. • Need at least 2 instruments for ( β, γ ) parameters. Heckman Part III

  12. Implication of Predeterminedness: • E ∗ ( v i , t − v i , t − 1 | X t − 1 , y t − 2 ) = 0, t = 3 , ..., T i i • For T = 3 , we acquire   y i 1 0 = E X i 1 (∆ y i 3 − α ∆ y i 2 − β 0 ∆ X i 3 − β 1 ∆ X i 2 )   X i 2 • This condition is not the same as that in strictly exogenous models: • We acquire 3 moments only 2 in common with last (across strictly exogenous and these models). • Standard errors are consistent with arbitrary serial correlation. Heckman Part III

  13. • If we had ruled out arbitrary serial correlation in the first model of strictly exogenous regressors, by it | X T 1 , y t − 1 E ∗ ( v ∗ ) = 0 t = 2 , ..., T i we acquire superset of all conditions. (A) and previous ones. • (A) = ⇒ E (∆ v it , ∆ v i , t − j ) = 0 j > 1 because we have that the covariances are zero • Cov ( v i , t y t − 1 ) = 0 i • . .. Cov ( v it , v i , t − 1 ) = 0 generically. Heckman Part III

  14. • Observe that in the predetermined case we can have special cases of serial correlation. • e.g. for T = 4 E (∆ v i , t ∆ v i , t − j ) = 0 j > 2 • Valid for first order MA . • Valid orthogonality conditions derived from: • ∆ y i , 3 − α ∆ y i , 2 − β 0 ∆ X i , 3 − β 1 ∆ X i , 2 = v i , 3 − v i , 2 • ∆ y i , 4 − α ∆ y i , 3 − β 0 ∆ X i , 4 − β 1 ∆ X i , 3 = v i , 4 − v i , 3 Heckman Part III

  15. • Orthogonality conditions: E ( y i 1 ∆ v i , 4 ) = 0 E ( x i 1 ∆ v i , 4 ) = 0 E ( x i 2 ∆ v i , 4 ) = 0 . Heckman Part III

  16. • Other orthogonality conditions from: y i , 4 = α y i , 3 + β 0 X i , 4 + β 1 X i , 3 + η i + v i , 4 y i , 3 = α y i , 2 + β 0 X i , 2 + β 1 X i , 1 + η i + v i , 3 ∆ y i , 4 = α ( y i , 3 − y i , 2 ) + β 0 ( X i , 4 − X i , 3 ) + β 1 ( X i 32 − X i , 2 ) + ( v i , 4 − v i , 3 ) Heckman Part III

  17. Suppose Uncorrelated Fixed Effects • Some X it uncorrelated with η i E [ X T i ( y i 2 − α y i 1 − β 0 X i 2 − β 1 X i 1 )] = 0 • T orthogonality conditions for each regressor. • Predetermined variables could be uncorrelated with fixed effects X it = ρ X i , ( t − 1) + γ v i , ( t − 1) + ϕη i + ε i , t if φ = 0 , X would be uncorrelated with η. Heckman Part III

  18. • Adds more orthogonality restrictions: E ( X i 1 ( y i 2 − α y i 1 − β 0 X i 2 − β 1 X i 1 )) = 0 E ( X it ( y it − α y i , t − 1 − β 0 X it − β 1 X i , t − 1 )) = 0 , t = 2 , ..., T . • Only identified when T ≥ 3. Heckman Part III

  19. Statistical Definitions: • Strict Exogeneity: E ∗ ( y it | X T i , η i ) = E ∗ ( y it | X t i , η i ) E ∗ ( X i , t +1 | X t i , y t ⇐ ⇒ i , η i ) = E ∗ ( X i , ( t +1) | X t i , η i ) • ( y does not Granger cause X ). Heckman Part III

  20. • Let X ( t +1) T = ( X i , t +1 , ..., X i , T ) if i t X ( t +1) T • E ∗ ( y it | X T i , η i ) = β ′ t X t i + δ ′ + γ t η i and i • E ∗ ( X i ( t +1) | X t i , y t i , η i ) = ψ ′ X t i + φ ′ t y t i + ε t η i δ t = 0 ⇐ ⇒ φ t = 0. Heckman Part III

  21. AR-1 Models Balestra - Nerlove Problem • y it = α y i , t − 1 + η i + v i , t • i = 1 , ..., I ; t = 2 , ..., T • (A-1) E ∗ ( v it | y t − 1 ) = 0 t = 2 , ..., T i E ( η i ) = γ , E ( v 2 it ) = σ 2 t Var ( η i ) = σ 2 η • η i and v it freely correlated • E ( v 2 it | y t − 1 ) need not coincide with σ 2 t . i Heckman Part III

  22. • We get ( T − 1)( T − 2) / 2 moment restrictions: E ( y t − 2 (∆ y it − α ∆ y i , t − 1 )) = 0 i • Using minimum discrepancy (CMD) methods take y it = α y i , t − 1 + η i + v it . Heckman Part III

  23. • For s < t , we obtain: y i , t y i , s = α y i , t − 1 , y i , s + η i y i , s + y i , s v i , t E ( y it y is ) = α E ( y i , t − 1 y i , s ) + E ( η i y i , s ) + E ( y i , s v i , t ) =0 E ( y it y is ) = ω ts [ E ( y i , t − 1 y is ) = ω t − 1 , s ] E ( y is η i , t ) = c s Heckman Part III

  24. � T + 1 � • We take T × distinct elements of 2 Ω = E ( y i y ′ i ). • For T = 3, we obtain ω 31 = αω 21 + c 1 • ω 21 = αω 11 + c 1 α = ω 31 − ω 21 = α ( ω 21 − ω 11 ) ω 21 − ω 11 ( ω 21 − ω 11 ) c 1 = ω 31 − αω 21 c 2 = ω 32 − αω 22 • . .. model just identified. • Fit discrepancies between the population moments and fitted moments. Heckman Part III

  25. y t = α y t − 1 + β X t + η i + U it U it = ρ U it − 1 + ε it ⊥ ε i , t ′ ∀ t , t ′ ε i , t ⊥ ⊥ X t ′ ∀ t , t ′ ε it ⊥ η i ⊥ ⊥ X t ′ ε it ? maybe y t = α y t − 1 + β X t + η i + ρ U i , t − 1 + ε i , t y t = α y t − 1 + β X t + η i + ρ ( y t − 1 − α t − 2 − β X t − 1 − η i ) + ε it = ( α + ρ ) y t − 1 + β X t − ρβ X t − 1 − ρα y t − 2 + (1 − ρ ) η i + ε i , t • What parameters are identified? • Suppose we work with ∆ y it : eliminates fixed effect. Heckman Part III

  26. I. Suppose ρ = 1: (errors are random walks) y t = ( α + 1) y t − 1 − α y t − 2 | + β ( X t − X t − 1 ) + ε it II. Suppose α = 1 y t = (1 + ρ ) y t − 1 − ρ y t − 2 | + β X t − ρβ X t − 1 + (1 − ρ ) + ε it • In I., η i vanishes • In II., it does not Heckman Part III

  27. Other Restrictions Heckman Part III

  28. • Lack of correlation between effects and errors: E ∗ ( v it | y t − 1 , η i ) = 0 , t = 2 , ..., T i 0 = E [( y it − α y i , t − 1 ) [∆ y i , t − 1 − α ∆ y i , t − 2 ]] quadratic (in α ) restrictions: because E ( η i ∆ v i , t − 1 ) = 0. Heckman Part III

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend