pamela atic c vs dark matter annihilations
play

PAMELA, ATIC & C. vs Dark Matter annihilations Marco Cirelli - PowerPoint PPT Presentation

5 May 2009 TANGO in PARIS PAMELA, ATIC & C. vs Dark Matter annihilations Marco Cirelli (CNRS, IPhT-CEA/Saclay) Nuclear Physics B 753 (2006) Nuclear Physics B 787 (2007) in collaboration with: Nuclear Physics B 800 (2008) A.Strumia


  1. Aside: anti-deuterium The signals from heavy, non-leptons-only DM are interesting! __ TOA d � flux: from ΧΧ � bb : best and worst cases 10 � 3 current BESS limit dashed: best case: NFW, prop.: max 10 � 4 dotted: worst case: isothermal, prop.: min projected AMS � 02 GAPS projected 5 TeV � in � m 2 sr s GeV � n � � 1 10 � 5 10 TeV 10 � 6 20 TeV 5 TeV 10 � 7 10 TeV 20 TeV 10 � 8 � Σ ann. v �� 5 TeV � � 3 � 10 � 22 cm 3 s � 1 10 � 9 � Σ ann. v �� 10 TeV � � 7 � 10 � 22 cm 3 s � 1 � Σ ann. v �� 20 TeV � � 2 � 10 � 21 cm 3 s � 1 10 � 10 10 � 1 10 0 10 1 T in GeV � n

  2. Data sets Electrons + positrons from ATIC, PPB-BETS and HESS: HESS 2008 e + + e − - an excess 10 � 1 ATIC � 2 � Nature 2008 � (2008) PPB � BETS at 700 GeV? ∼ EC AMS HEAT � CAPRICE94 � � � � � � � � E 3 � e � � e � � GeV 2 � cm 2 sec � � � Tang et al. 1984 � � � � � � � � � � � � � � � � � � � ���� � � � � � � � � � � � � � � � � � � � � 10 � 2 � � � � � � � � � � background ? � � � � � � HESS: � very interesting (independent!) but difficult analysis (particle ID: contamination 10 � 3 from gamma & hadronic showers): 10 2 10 3 10 4 10 are these upper limits? energy in GeV [future data from GLAST]

  3. Results Which DM spectra can fit the data? A DM with: -mass M DM = 1 TeV -annihilation DM DM → µ + µ −

  4. Results Which DM spectra can fit the data? A DM with: -mass M DM = 1 TeV -annihilation DM DM → µ + µ − Electrons + Positrons: Positrons: Anti-protons: Yes! Yes! ! s e Y

  5. Results Which DM spectra can fit the data? A DM with: -mass M DM = 1 TeV -annihilation DM DM → µ + µ − Electrons + Positrons: Positrons: Anti-protons: Yes! Yes! ! s e Y Have we identified the DM for the first time?

  6. Results Which DM can fit the data? M.Pospelov and A.Ritz, 0810.1502: Secluded DM - A.Nelson and C.Spitzer, 0810.5167: Slightly Non-Minimal DM - Y.Nomura and J.Thaler, 0810.5397: DM through the Axion Portal - R.Harnik and G.Kribs, 0810.5557: Dirac DM - D.Feldman, Z.Liu, P.Nath, 0810.5762: Hidden Sector - T.Hambye, 0811.0172: Hidden Vector - Yin, Yuan, Liu, Zhang, Bi, Zhu, 0811.0176: Leptonically decaying DM - K.Ishiwata, S.Matsumoto, T.Moroi, 0811.0250: Superparticle DM - Y.Bai and Z.Han, 0811.0387: sUED DM - P.Fox, E.Poppitz, 0811.0399: Leptophilic DM - C.Chen, F.Takahashi, T.T.Yanagida, 0811.0477: Hidden-Gauge-Boson DM - K.Hamaguchi, E.Nakamura, S.Shirai, T.T.Yanagida, 0811.0737: Decaying DM in Composite Messenger - E.Ponton, L.Randall, 0811.1029: Singlet DM - A.Ibarra, D.Tran, 0811.1555: Decaying DM - S.Baek, P.Ko, 0811.1646: U(1) Lmu-Ltau DM - C.Chen, F.Takahashi, T.T.Yanagida, 0811.3357: Decaying Hidden-Gauge-Boson DM - I.Cholis, G.Dobler, D.Finkbeiner, L.Goodenough, N.Weiner, 0811.3641: 700+ GeV WIMP - E.Nardi, F.Sannino, A.Strumia, 0811.4153: Decaying DM in TechniColor - K.Zurek, 0811.4429: Multicomponent DM - M.Ibe, H.Murayama, T.T.Yanagida, 0812.0072: Breit-Wigner enhancement of DM annihilation - E.Chun, J.-C.Park, 0812.0308: sub-GeV hidden U(1) in GMSB - M.Lattanzi, J.Silk, 0812.0360: Sommerfeld enhancement in cold substructures - M.Pospelov, M.Trott, 0812.0432: super-WIMPs decays DM - Zhang, Bi, Liu, Liu, Yin, Yuan, Zhu, 0812.0522: Discrimination with SR and IC - Liu, Yin, Zhu, 0812.0964: DMnu from GC - M.Pohl, 0812.1174: electrons from DM - J.Hisano, M.Kawasaki, K.Kohri, K.Nakayama, 0812.0219: DMnu from GC - A.Arvanitaki, S.Dimopoulos, S.Dubovsky, P.Graham, R.Harnik, S.Rajendran, 0812.2075: Decaying DM in GUTs - R.Allahverdi, B.Dutta, K.Richardson-McDaniel, Y.Santoso, 0812.2196: SuSy B-L DM- S.Hamaguchi, K.Shirai, T.T.Yanagida, 0812.2374: Hidden-Fermion DM decays - D.Hooper, A.Stebbins, K.Zurek, 0812.3202: Nearby DM clump - C.Delaunay, P.Fox, G.Perez, 0812.3331: DMnu from Earth - Park, Shu, 0901.0720: Split- UED DM - .Gogoladze, R.Khalid, Q.Shafi, H.Yuksel, 0901.0923: cMSSM DM with additions - Q.H.Cao, E.Ma, G.Shaughnessy, 0901.1334: Dark Matter: the leptonic connection - E.Nezri, M.Tytgat, G.Vertongen, 0901.2556: Inert Doublet DM - C.-H.Chen, C.-Q.Geng, D.Zhuridov, 0901.2681: Fermionic decaying DM - J.Mardon, Y.Nomura, D.Stolarski, J.Thaler, 0901.2926: Cascade annihilations (light non-abelian new bosons) - P.Meade, M.Papucci, T.Volansky, 0901.2925: DM sees the light - D.Phalen, A.Pierce, N.Weiner, 0901.3165: New Heavy Lepton - T.Banks, J.-F.Fortin, 0901.3578: Pyrma baryons - Goh, Hall, Kumar, 0902.0814: Leptonic Higgs - K.Bae, J.-H. Huh, J.Kim, B.Kyae, R.Viollier, 0812.3511: electrophilic axion from flipped-SU(5) with extra spontaneously broken symmetries and a two component DM with Z 2 parity - ...

  7. Results Which DM can fit the data? M.Pospelov and A.Ritz, 0810.1502: Secluded DM - A.Nelson and C.Spitzer, 0810.5167: Slightly Non-Minimal DM - Y.Nomura and J.Thaler, 0810.5397: DM through the Axion Portal - R.Harnik and G.Kribs, 0810.5557: Dirac DM - D.Feldman, Z.Liu, P.Nath, 0810.5762: Hidden Sector - T.Hambye, 0811.0172: Hidden Vector - Yin, Yuan, Liu, Zhang, Bi, Zhu, 0811.0176: Leptonically decaying DM - K.Ishiwata, S.Matsumoto, T.Moroi, 0811.0250: Superparticle DM - Y.Bai and Z.Han, 0811.0387: sUED DM - P.Fox, E.Poppitz, 0811.0399: Leptophilic DM - C.Chen, F.Takahashi, T.T.Yanagida, 0811.0477: Hidden-Gauge-Boson DM - K.Hamaguchi, E.Nakamura, S.Shirai, T.T.Yanagida, 0811.0737: Decaying DM in Composite Messenger - E.Ponton, L.Randall, 0811.1029: Singlet DM - A.Ibarra, D.Tran, 0811.1555: Decaying DM - S.Baek, P.Ko, 0811.1646: U(1) Lmu-Ltau DM - C.Chen, F.Takahashi, T.T.Yanagida, 0811.3357: Decaying Hidden-Gauge-Boson DM - I.Cholis, G.Dobler, D.Finkbeiner, L.Goodenough, N.Weiner, 0811.3641: 700+ GeV WIMP - E.Nardi, F.Sannino, A.Strumia, 0811.4153: Decaying DM in TechniColor - K.Zurek, 0811.4429: Multicomponent DM - M.Ibe, H.Murayama, T.T.Yanagida, 0812.0072: Breit-Wigner enhancement of DM annihilation - E.Chun, J.-C.Park, 0812.0308: sub-GeV hidden U(1) in GMSB - M.Lattanzi, J.Silk, 0812.0360: Sommerfeld enhancement in cold substructures - M.Pospelov, M.Trott, 0812.0432: super-WIMPs decays DM - Zhang, Bi, Liu, Liu, Yin, Yuan, Zhu, 0812.0522: Discrimination with SR and IC - Liu, Yin, Zhu, 0812.0964: DMnu from GC - M.Pohl, 0812.1174: electrons from DM - J.Hisano, M.Kawasaki, K.Kohri, K.Nakayama, 0812.0219: DMnu from GC - A.Arvanitaki, S.Dimopoulos, S.Dubovsky, P.Graham, R.Harnik, S.Rajendran, 0812.2075: Decaying DM in GUTs - R.Allahverdi, B.Dutta, K.Richardson-McDaniel, Y.Santoso, 0812.2196: SuSy B-L DM- S.Hamaguchi, K.Shirai, T.T.Yanagida, 0812.2374: Hidden-Fermion DM decays - D.Hooper, A.Stebbins, K.Zurek, 0812.3202: Nearby DM clump - C.Delaunay, P.Fox, G.Perez, 0812.3331: DMnu from Earth - Park, Shu, 0901.0720: Split- UED DM - .Gogoladze, R.Khalid, Q.Shafi, H.Yuksel, 0901.0923: cMSSM DM with additions - Q.H.Cao, E.Ma, G.Shaughnessy, 0901.1334: Dark Matter: the leptonic connection - E.Nezri, M.Tytgat, G.Vertongen, 0901.2556: Inert Doublet DM - C.-H.Chen, C.-Q.Geng, D.Zhuridov, 0901.2681: Fermionic decaying DM - J.Mardon, Y.Nomura, D.Stolarski, J.Thaler, 0901.2926: Cascade annihilations (light non-abelian new bosons) - P.Meade, M.Papucci, T.Volansky, 0901.2925: DM sees the light - D.Phalen, A.Pierce, N.Weiner, 0901.3165: New Heavy Lepton - T.Banks, J.-F.Fortin, 0901.3578: Pyrma baryons - Goh, Hall, Kumar, 0902.0814: Leptonic Higgs - K.Bae, J.-H. Huh, J.Kim, B.Kyae, R.Viollier, 0812.3511: electrophilic axion from flipped-SU(5) with extra spontaneously broken symmetries and a two component DM with Z 2 parity - ...

  8. Results Which DM spectra can fit the data? Model-independent results: fit to PAMELA positrons * + balloon experiments *adding anti-protons does not change much, non-leptonic channels give too smooth spectrum for balloons

  9. Results Which DM spectra can fit the data? Model-independent results: fit to PAMELA positrons * + balloon experiments (1) annihilate into leptons (e.g. ), mass 1 TeV µ + µ − ∼

  10. Data sets Electrons + positrons from FERMI: “Designed as a high-sensitivity FERMI-LAT gamma-ray observatory, (Usa + France +Italy + Germany + Japan + Sweden) the FERMI Large Area Telescope is also an electron detector with a large acceptance”

  11. Data sets Electrons + positrons adding FERMI: FERMI 2009 e + + e − 10 � 1 - no excess HESS 2009 HESS 2008 - spectrum . ATIC 2008 ∼ E − 3 . 04 PPB � BETS EC � AMS � � � � � � � � E 3 � e � � e � � GeV 2 � cm 2 sec � � � � � � � HEAT � � � � � CAPRICE94 � � � � � � � � � � ���� � � Tang et al. 1984 � � ��� � � � � � � � � � � � � � � � � � � ������������� � � � � � � � � � � � � � � � 10 � 2 � � � � � � � � � � � � � � background ? � � � � � 10 � 3 10 2 10 3 10 4 10 energy in GeV [formerly predicted GLAST sensitivity]

  12. Results Which DM spectra can fit the data?

  13. Results Which DM spectra can fit the data? µ + µ − , M DM ≃ 1 TeV 10 � 1 FERMI 2009 HESS 2008 ATIC 2008 E 3 � e � � e � � in GeV 2 � cm 2 s sr � � ��� � � � � � � � � � � � � � � � � ���� � �� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������ � � � � � � � � � � � � 10 � 2 � � � � � � � � �� � � � � � � � 10 � 3 10 2 10 3 10 4 10 Energy in GeV

  14. Results Which DM spectra can fit the data? µ + µ − , M DM ≃ 1 TeV 10 � 1 FERMI 2009 HESS 2008 ATIC 2008 E 3 � e � � e � � in GeV 2 � cm 2 s sr � � ��� � � � � � � � � � � � � � � � � ���� � �� ��� � � � � � � � � � � � � � � � � � � τ + τ − , M DM ≃ 2 TeV � � � � � � � � � � � � ������ � � � � � � � � � � � � 10 � 2 � � � � � � � � �� � � 10 � 1 � � � FERMI 2009 � HESS 2008 � ATIC 2008 E 3 � e � � e � � in GeV 2 � cm 2 s sr � � ��� � � � � � � 10 � 3 � � � � � � � � 10 2 10 3 10 4 10 � � ���� � �� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������ � � � � � � Energy in GeV � � � � � � 10 � 2 � � � � � � � � �� � � � � � � � 10 � 3 10 2 10 3 10 4 10 Energy in GeV

  15. Results Which DM spectra can fit the data? µ + µ − , M DM ≃ 1 TeV 10 � 1 FERMI 2009 HESS 2008 ATIC 2008 E 3 � e � � e � � in GeV 2 � cm 2 s sr � � ��� � � � � � � � � � � � � � � � � ���� � �� ��� � � � � � � � � � � � � � � � � � � τ + τ − , M DM ≃ 2 TeV � � � � � � � � � � � � ������ � � � � � � � � � � � � 10 � 2 � � � � � � � � �� � � 10 � 1 � � � FERMI 2009 � HESS 2008 � ATIC 2008 E 3 � e � � e � � in GeV 2 � cm 2 s sr W + W − , M DM ≃ 10 TeV � � ��� � � � � � � 10 � 3 � � � � � � � � 10 2 10 3 10 4 10 � � ���� � �� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������ � � � � � � 10 � 1 Energy in GeV � � � � � � 10 � 2 � � � � � � FERMI 2009 � � �� HESS 2008 � ATIC 2008 � E 3 � e � � e � � in GeV 2 � cm 2 s sr � � � � � ��� � � � � � � � � � � � � � � � � � � ���� � �� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������ � � � � � � � � � � � � 10 � 2 � � � � � � � 10 � 3 � �� 10 2 10 3 10 4 10 � � Energy in GeV � � � � � 10 � 3 10 2 10 3 10 4 10 Energy in GeV

  16. Results Which DM spectra can fit the data? Notice: µ + µ − , M DM ≃ 1 TeV - same spectra still fit PAMELA positron and anti-protons! Caveats: 10 � 1 - scanning non- systematically propagation parameters FERMI 2009 HESS 2008 ATIC 2008 - varying background (within errors) E 3 � e � � e � � in GeV 2 � cm 2 s sr � � ��� � � � - annihilations only (direct ones; and no decay) � � � � � � � � � � � � � ���� � �� ��� � � � � � � � � � � � � � � � � � � τ + τ − , M DM ≃ 2 TeV � � � � � � � � � � � � ������ � � � � � � � � � � � � 10 � 2 � � � � � � � � �� � � 10 � 1 � � � FERMI 2009 � HESS 2008 � ATIC 2008 E 3 � e � � e � � in GeV 2 � cm 2 s sr W + W − , M DM ≃ 10 TeV � � ��� � � � � � � 10 � 3 � � � � � � � � 10 2 10 3 10 4 10 � � ���� � �� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������ � � � � � � 10 � 1 Energy in GeV � � � � � � 10 � 2 � � � � � � FERMI 2009 � � �� HESS 2008 � ATIC 2008 � E 3 � e � � e � � in GeV 2 � cm 2 s sr � � � � � ��� � � � � � � � � � � � � � � � � � � ���� � �� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������ � � � � � � � � � � � � 10 � 2 � � � � � � � 10 � 3 � �� 10 2 10 3 10 4 10 � � Energy in GeV � � � � � 10 � 3 10 2 10 3 10 4 10 Energy in GeV

  17. Results Which DM spectra can fit the data? Notice: µ + µ − , M DM ≃ 1 TeV - same spectra still fit PAMELA positron and anti-protons! Caveats: 10 � 1 - scanning non- systematically propagation parameters FERMI 2009 HESS 2008 ATIC 2008 - varying background (within errors) E 3 � e � � e � � in GeV 2 � cm 2 s sr � � ��� � � � - annihilations only (direct ones; and no decay) � � � � � � � � � � � � � ���� � �� ��� � � � � � � � � � � � � � � � � � � τ + τ − , M DM ≃ 2 TeV � � � � � � � � � � � � ������ � � � � � � � � � � � � 10 � 2 � � � � � � � � �� � � 10 � 1 � � � FERMI 2009 � HESS 2008 � ATIC 2008 E 3 � e � � e � � in GeV 2 � cm 2 s sr W + W − , M DM ≃ 10 TeV � � ��� � � � � � � 10 � 3 � � � � � � � � 10 2 10 3 10 4 10 � � ���� � �� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������ � � � � � � 10 � 1 Energy in GeV � � � � � � 10 � 2 � � � � � � FERMI 2009 � � �� HESS 2008 � ATIC 2008 � E 3 � e � � e � � in GeV 2 � cm 2 s sr � � � � � ��� � � � � � � � � � � � � � � � � � � ���� � �� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������ � � � � � � � � � � � � 10 � 2 � � � � � � � 10 � 3 � �� 10 2 10 3 10 4 10 � � Energy in GeV � � � � - no features => � M DM > 1 TeV 10 � 3 - smooth lepton spectrum 10 2 10 3 10 4 10 Energy in GeV

  18. Results Which DM spectra can fit the data? y Notice: µ + µ − , M DM ≃ 1 TeV r - same spectra still fit PAMELA positron and anti-protons! a Caveats: 10 � 1 n - scanning non- systematically propagation parameters FERMI 2009 HESS 2008 ATIC 2008 - varying background (within errors) E 3 � e � � e � � in GeV 2 � cm 2 s sr i � � ��� � � � - annihilations only (direct ones; and no decay) � � m � � � � � � � � � � � ���� � �� ��� � � � � � � � � � � � � � � � � � � τ + τ − , M DM ≃ 2 TeV � � � � � � � � � � � � ������ � � � � � � � � � � � � 10 � 2 � � � � � � � � i �� � � l 10 � 1 � � e � FERMI 2009 � HESS 2008 � ATIC 2008 E 3 � e � � e � � in GeV 2 � cm 2 s sr W + W − , M DM ≃ 10 TeV r � � ��� � � � � � � 10 � 3 � � � � � � P � � 10 2 10 3 10 4 10 � � ���� � �� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������ � � � � � � 10 � 1 Energy in GeV � � � � � � 10 � 2 � � � � � � FERMI 2009 � � �� HESS 2008 � ATIC 2008 � E 3 � e � � e � � in GeV 2 � cm 2 s sr � � � � � ��� � � � � � � � � � � � � � � � � � � ���� � �� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������ � � � � � � � � � � � � 10 � 2 � � � � � � � 10 � 3 � �� 10 2 10 3 10 4 10 � � Energy in GeV � � � � - no features => � M DM > 1 TeV 10 � 3 - smooth lepton spectrum 10 2 10 3 10 4 10 Energy in GeV

  19. Results Which DM spectra can fit the data? y Notice: µ + µ − , M DM ≃ 1 TeV r - same spectra still fit PAMELA positron and anti-protons! a Caveats: 10 � 1 n - scanning non- systematically propagation parameters FERMI 2009 HESS 2008 ATIC 2008 - varying background (within errors) E 3 � e � � e � � in GeV 2 � cm 2 s sr i � � ��� � � � - annihilations only (direct ones; and no decay) � � m � � � � � � � � � � � ���� � �� ��� � � � � � � � � � � � � � � � � � � τ + τ − , M DM ≃ 2 TeV � � � � � � � � � � � � ������ � � � � � � � � � � � � 10 � 2 � � � � � � � � i �� � � l 10 � 1 � � e � FERMI 2009 � HESS 2008 � ATIC 2008 E 3 � e � � e � � in GeV 2 � cm 2 s sr W + W − , M DM ≃ 10 TeV r � � ��� � � � � � � 10 � 3 � � � � � � P � � 10 2 10 3 10 4 10 � � ���� � �� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������ � � � � � � 10 � 1 Energy in GeV � � � � � � 10 � 2 � � � � � � FERMI 2009 � � �� HESS 2008 � ATIC 2008 � E 3 � e � � e � � in GeV 2 � cm 2 s sr � � � � � ��� � � � � � � � � � � � � � � � � � � ���� � �� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ������ � � � � � � � � � � � � 10 � 2 � � � � � � � 10 � 3 � �� 10 2 10 3 10 4 10 � � Energy in GeV � � � � � See e.g. Strumia, Papucci et al. ( to appear) 10 � 3 10 2 10 3 10 4 10 Energy in GeV see also: Bergstrom, Edsjo, Zaharijas today

  20. Indirect Detection Indirect Detection from DM annihilations in galactic center γ ( − ) ( − ) DM p , and W − , Z, b, τ − , t, h . . . � e ∓ , D . . . γ ( − ) ( − ) W + , Z, ¯ b, τ + , ¯ t, h . . . � e ± , p , and D . . . DM γ typically sub-TeV energies

  21. Indirect Detection Indirect Detection from DM annihilations in Sagittarius Dwarf γ ( − ) ( − ) DM p , and W − , Z, b, τ − , t, h . . . � e ∓ , D . . . γ ( − ) ( − ) W + , Z, ¯ b, τ + , ¯ t, h . . . � e ± , p , and D . . . DM γ

  22. Indirect Detection Indirect Detection e ± radio-waves from synchrotron radiation of in GC e ± S S N N (energy in B ~ kinetic energy) e ± - compute the population of from DM annihilations in the GC - compute the synchrotron emitted power for different configurations of galactic � B (assuming ‘scrambled’ B; in principle, directionality could focus emission, lift bounds by O(some))

  23. Indirect Detection Indirect Detection e ± from Inverse Compton on in halo γ e ± e ± - upscatter of CMB, infrared and starlight photons on energetic - probes regions outside of Galactic Center

  24. Comparing with data

  25. Gamma constraints HESS has detected -ray γ emission from Gal Center and Gal Ridge. The DM signal must not excede that. HESS coll. 0 1 -1

  26. Gamma constraints HESS has detected -ray γ Gal Center emission from Gal Center and Gal Ridge. The DM signal must not excede that. HESS coll. 0 1 -1

  27. Gamma constraints HESS has detected -ray γ emission from Gal Center Gal Ridge and Gal Ridge. The DM signal must not excede that. HESS coll. 0 1 -1

  28. Gamma constraints HESS has detected -ray γ emission from Gal Center and Gal Ridge. The DM signal must not excede that. HESS coll. 0 1 -1 Data: HESS coll., astro-ph/0408145 and astro-ph/0610509 σ v ann = 10 − 23 cm 3 / sec k O

  29. Gamma constraints HESS has detected -ray γ emission from Gal Center and Gal Ridge. The DM signal must not excede that. HESS coll. 0 1 -1 Data: HESS coll., astro-ph/0408145 and astro-ph/0610509 σ v ann = 10 − 23 cm 3 / sec σ v ann = 10 − 23 cm 3 / sec o N k O Data: HESS coll., astro-ph/0603021

  30. Gamma constraints HESS has detected -ray γ emission from Gal Center and Gal Ridge. The DM signal must not excede that. HESS coll. Moreover: no detection from 0 1 -1 Sgr dSph => upper bound. Data: HESS coll., astro-ph/0408145 and astro-ph/0610509 σ v ann = 10 − 23 cm 3 / sec σ v ann = 10 − 23 cm 3 / sec o N k O Data: HESS coll., astro-ph/0603021

  31. Gamma constraints EGRET and FERMI have measured diffuse -ray γ emission. The DM signal must not excede that. FERMI coll. 10 � 20 region 10 � 60 region Data: EGRET coll.,Strong et al. astro-ph/0406254 10 � 1 10 � 1 Σ v ann � 5 10 � 22 cm 3 � s DM DM � W � W � Σ v ann � 5 10 � 23 cm 3 � s DM DM � Μ � Μ � M DM � 10 TeV NFW Profile 2 d � � d Ε 1 � MeV cm � 2 s � 1 sr � 1 � M DM � 1.5 TeV IsoT Profile 2 d � � d Ε 1 � MeV cm � 2 s � 1 sr � 1 � EGRET Data: FERMI coll., several talks in 2009 10 � 2 EGRET 10 � 2 FERMI 10 � 3 Preliminary Total Total CMB IR 10 � 3 10 � 4 IR CMB SL Ε 1 Ε 1 SL 10 � 4 10 � 5 10 10 2 10 3 10 4 10 5 10 6 10 10 2 10 3 10 4 10 5 10 6 10 7 Photon energy Ε 1 � MeV � Photon energy Ε 1 � MeV �

  32. Galactic Center constraints γ +ATIC-2 GC − γ GR − γ The PAMELA and ATIC regions are in conflict with gamma constraints, unless... Bertone, Cirelli, Strumia, Taoso 0811.3744

  33. Galactic Center constraints γ Bertone, Cirelli, Strumia, Taoso 0811.3744 see also: Bertone, Pieri, Pato today

  34. Galactic Center constraints γ Bertone, Cirelli, Strumia, Taoso 0811.3744 ...not-too-steep profile needed.

  35. Galactic Center constraints γ Bertone, Cirelli, Strumia, Taoso 0811.3744 ...not-too-steep profile needed. Or: take different boosts here (at Earth, for e + ) than there (at GC, for gammas). Or: take ad hoc DM profiles (truncated at 100 pc, with central void..., after all we don’t know ).

  36. Inverse Compton constraints γ DM DM � ΜΜ , Einasto profile 10 � 20 10 � 21 10 � 22 Σ v � cm 3 � s � 10 � 23 EGRET 5 � 30 10 � 24 EGRET 10 � 60 The PAMELA EGRET 10 � 20 and ATIC regions 10 � 25 FERMI 10 � 20 are in conflict with gamma 10 � 26 constraints, 10 2 10 3 10 4 M DM � GeV � unless... Cirelli, Panci 0904.3830

  37. Inverse Compton constraints γ DM DM � ee, Einasto profile DM DM � ΜΜ , Einasto profile DM DM � ΤΤ , Einasto profile 10 � 20 10 � 20 10 � 20 10 � 21 10 � 21 10 � 21 10 � 22 10 � 22 10 � 22 Σ v � cm 3 � s � Σ v � cm 3 � s � Σ v � cm 3 � s � 10 � 23 10 � 23 10 � 23 EGRET 5 � 30 EGRET 5 � 30 EGRET 5 � 30 10 � 24 EGRET 10 � 60 10 � 24 EGRET 10 � 60 10 � 24 EGRET 10 � 60 EGRET 10 � 20 EGRET 10 � 20 EGRET 10 � 20 10 � 25 FERMI 10 � 20 10 � 25 FERMI 10 � 20 10 � 25 FERMI 10 � 20 10 � 26 10 � 26 10 � 26 10 2 10 3 10 4 10 2 10 3 10 4 10 2 10 3 10 4 M DM � GeV � M DM � GeV � M DM � GeV � DM DM � ee, IsoT profile DM DM � ΜΜ , IsoT profile DM DM � ΤΤ , IsoT profile 10 � 20 10 � 20 10 � 20 10 � 21 10 � 21 10 � 21 10 � 22 10 � 22 10 � 22 Σ v � cm 3 � s � Σ v � cm 3 � s � Σ v � cm 3 � s � 10 � 23 10 � 23 10 � 23 EGRET 5 � 30 EGRET 5 � 30 EGRET 5 � 30 10 � 24 EGRET 10 � 60 10 � 24 EGRET 10 � 60 10 � 24 EGRET 10 � 60 EGRET 10 � 20 EGRET 10 � 20 EGRET 10 � 20 10 � 25 FERMI 10 � 20 10 � 25 FERMI 10 � 20 10 � 25 FERMI 10 � 20 10 � 26 10 � 26 10 � 26 10 2 10 3 10 4 10 2 10 3 10 4 10 2 10 3 10 4 M DM � GeV � M DM � GeV � M DM � GeV � Cirelli, Panci 0904.3830 see also: Regis, Ullio 0904.4645

  38. DM annihilations: the game Dark Matter annihilations

  39. DM annihilations: the game huge σ ann v Dark Matter annihilations ordinary, thermal σ ann v

  40. DM annihilations: the game huge σ ann v Dark Matter annihilations ordinary, thermal σ ann v

  41. DM annihilations: the game PAMELA positrons huge σ ann v Dark Matter annihilations ordinary, thermal σ ann v

  42. DM annihilations: the game PAMELA positrons huge σ ann v Dark Matter annihilations ordinary, thermal σ ann v

  43. DM annihilations: the game PAMELA positrons leptons only huge σ ann v Dark Matter annihilations ordinary, ordinary, thermal σ ann v mixed BRs 10 TeV, WW, qq

  44. DM annihilations: the game PAMELA positrons leptons only huge σ ann v Dark Matter annihilations ordinary, ordinary, thermal σ ann v mixed BRs 10 TeV, WW, qq

  45. DM annihilations: the game PAMELA anti-p PAMELA positrons leptons only huge σ ann v Dark Matter annihilations ordinary, ordinary, thermal σ ann v mixed BRs 10 TeV, WW, qq

  46. DM annihilations: the game PAMELA anti-p PAMELA positrons leptons only huge σ ann v Dark Matter annihilations ordinary, ordinary, thermal σ ann v mixed BRs 10 TeV, WW, qq

  47. DM annihilations: the game PAMELA anti-p PAMELA positrons leptons only huge σ ann v Dark Matter annihilations ordinary, ordinary, thermal σ ann v mixed BRs 10 TeV, WW, qq

  48. DM annihilations: the game PAMELA anti-p PAMELA positrons leptons only huge σ ann v Dark Matter ATIC 2+4 annihilations ordinary, ordinary, thermal σ ann v mixed BRs 10 TeV, WW, qq

  49. DM annihilations: the game PAMELA anti-p PAMELA positrons leptons only huge σ ann v Dark Matter ATIC 2+4 annihilations ordinary, ordinary, thermal σ ann v mixed BRs 10 TeV, 1 TeV, WW, qq µ + µ −

  50. DM annihilations: the game PAMELA anti-p PAMELA positrons leptons only huge σ ann v Dark Matter ATIC 2+4 annihilations ordinary, ordinary, thermal σ ann v mixed BRs 10 TeV, 1 TeV, WW, qq µ + µ −

  51. DM annihilations: the game PAMELA anti-p PAMELA positrons leptons only huge σ ann v Dark Matter ATIC 2+4 annihilations ordinary, ordinary, thermal σ ann v mixed BRs 10 TeV, 1 TeV, WW, qq µ + µ −

  52. DM annihilations: the game PAMELA anti-p PAMELA positrons leptons only huge σ ann v Dark Matter ATIC 2+4 annihilations ordinary, ordinary, thermal σ ann v mixed BRs 10 TeV, 1 TeV, WW, qq µ + µ −

  53. DM annihilations: the game PAMELA anti-p PAMELA positrons leptons only huge σ ann v Dark Matter ATIC 2+4 annihilations ordinary, ordinary, thermal σ ann v mixed BRs 10 TeV, 1 TeV, WW, qq µ + µ − FERMI e + +e - HESS e + +e -

  54. DM annihilations: the game PAMELA anti-p PAMELA positrons leptons only huge σ ann v Dark Matter ATIC 2+4 annihilations ordinary, ordinary, thermal σ ann v mixed BRs 10 TeV, 1 TeV, WW, qq µ + µ − FERMI e + +e - HESS e + +e - 1 < 3 TeV, τ + τ −

  55. DM annihilations: the game PAMELA anti-p PAMELA positrons leptons only huge σ ann v Dark Matter ATIC 2+4 annihilations ordinary, ordinary, thermal σ ann v mixed BRs 10 TeV, 1 TeV, WW, qq µ + µ − FERMI e + +e - HESS e + +e - 1 < 3 TeV, τ + τ −

  56. DM annihilations: the game PAMELA anti-p PAMELA positrons leptons only huge σ ann v Dark Matter ATIC 2+4 annihilations ordinary, ordinary, thermal σ ann v mixed BRs 10 TeV, 1 TeV, WW, qq µ + µ − FERMI e + +e - HESS e + +e - 1 < 3 TeV, τ + τ − ray & radio γ constraints HESS

  57. DM annihilations: the game PAMELA anti-p PAMELA positrons leptons only huge σ ann v Dark Matter ATIC 2+4 annihilations ordinary, ordinary, thermal σ ann v mixed BRs 10 TeV, 1 TeV, WW, qq µ + µ − FERMI e + +e - HESS e + +e - 1 < 3 TeV, τ + τ − standard (NFW, Ein) DM profiles ray & radio γ constraints HESS distrust the GC

  58. DM annihilations: the game PAMELA anti-p PAMELA positrons leptons only huge σ ann v Dark Matter ATIC 2+4 annihilations ordinary, ordinary, thermal σ ann v mixed BRs 10 TeV, 1 TeV, WW, qq µ + µ − FERMI e + +e - HESS e + +e - 1 < 3 TeV, τ + τ − standard (NFW, Ein) DM profiles ray & radio γ constraints HESS distrust the GC

  59. DM annihilations: the game PAMELA anti-p PAMELA positrons leptons only huge σ ann v Dark Matter ATIC 2+4 annihilations ordinary, ordinary, thermal σ ann v mixed BRs 10 TeV, 1 TeV, WW, qq µ + µ − FERMI e + +e - HESS e + +e - 1 < 3 TeV, τ + τ − standard (NFW, Ein) DM profiles ray & radio γ constraints HESS distrust the GC

  60. DM annihilations: the game PAMELA anti-p PAMELA positrons leptons only huge σ ann v Dark Matter ATIC 2+4 annihilations ordinary, ordinary, thermal σ ann v mixed BRs 10 TeV, 1 TeV, WW, qq µ + µ − FERMI e + +e - HESS e + +e - 1 < 3 TeV, τ + τ − standard (NFW, Ein) DM profiles ray & radio γ constraints HESS distrust the GC diffuse ICS γ constraints EGRET + FERMI

  61. DM annihilations: the game PAMELA anti-p PAMELA positrons leptons only huge σ ann v Dark Matter ATIC 2+4 annihilations ordinary, ordinary, thermal σ ann v mixed BRs 10 TeV, 1 TeV, WW, qq µ + µ − FERMI e + +e - HESS e + +e - (?) 1 < 3 TeV, τ + τ − standard (NFW, Ein) standard (NFW, Ein) DM profiles DM profiles ray & radio γ constraints HESS smooth (isothermal) distrust the GC DM profiles diffuse ICS γ constraints EGRET + FERMI

  62. DM annihilations: the game PAMELA anti-p PAMELA positrons leptons only huge σ ann v Dark Matter ATIC 2+4 annihilations ordinary, ordinary, thermal σ ann v mixed BRs 10 TeV, 1 TeV, WW, qq µ + µ − FERMI e + +e - HESS e + +e - (?) 1 < 3 TeV, τ + τ − standard (NFW, Ein) standard (NFW, Ein) DM profiles DM profiles ray & radio γ constraints HESS smooth (isothermal) distrust the GC DM profiles diffuse ICS γ constraints EGRET + FERMI

  63. DM annihilations: the game PAMELA anti-p PAMELA positrons leptons only huge σ ann v Dark Matter ATIC 2+4 annihilations ordinary, ordinary, thermal σ ann v mixed BRs 10 TeV, 1 TeV, WW, qq µ + µ − FERMI e + +e - HESS e + +e - (?) 1 < 3 TeV, τ + τ − standard (NFW, Ein) standard (NFW, Ein) DM profiles DM profiles ray & radio γ constraints HESS smooth (isothermal) distrust the GC DM profiles diffuse ICS γ constraints EGRET + FERMI

  64. DM annihilations: the game PAMELA anti-p PAMELA positrons leptons only huge σ ann v Dark Matter ATIC 2+4 annihilations ordinary, ordinary, thermal σ ann v mixed BRs 10 TeV, 1 TeV, WW, qq µ + µ − FERMI e + +e - HESS e + +e - (?) 1 < 3 TeV, τ + τ − standard (NFW, Ein) standard (NFW, Ein) DM profiles DM profiles ray & radio γ constraints HESS smooth (isothermal) distrust the GC DM profiles diffuse ICS γ ?? numerical constraints simulations?! EGRET + FERMI

  65. DM annihilations: the game PAMELA anti-p PAMELA positrons leptons only huge σ ann v Dark Matter ATIC 2+4 annihilations ordinary, ordinary, thermal σ ann v mixed BRs 10 TeV, 1 TeV, WW, qq µ + µ − FERMI e + +e - HESS e + +e - (?) 1 < 3 TeV, τ + τ − standard (NFW, Ein) standard (NFW, Ein) DM profiles DM profiles ray & radio γ constraints HESS smooth (isothermal) distrust the GC DM profiles diffuse ICS γ ?? numerical constraints simulations?! EGRET + FERMI

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend