p rincipal c omponent a nalysis pca
play

P RINCIPAL C OMPONENT A NALYSIS (PCA) Singular Value Decomposition - PowerPoint PPT Presentation

M ODEL I DENTIFICATION BY G RADIENT M ETHODS Dr. Julien Billeter Laboratoire d'Automatique Ecole Polytechnique Fdrale de Lausanne (EPFL) MLS-S03 | 2013-2014 M ODEL I DENTIFICATION BY G RADIENT METHODS D YNAMIC M ODELS Conservation


  1. M ODEL I DENTIFICATION BY G RADIENT M ETHODS Dr. Julien Billeter Laboratoire d'Automatique Ecole Polytechnique Fédérale de Lausanne (EPFL) MLS-S03 | 2013-2014

  2. M ODEL I DENTIFICATION BY G RADIENT METHODS • D YNAMIC M ODELS – Conservation of Mass (Concentration Measurements) – Conservation of Energy (Calorimetry) – Beer’s Law (Spectroscopy) • I NTEGRATION OF D YNAMIC M ODELS – Euler’s Method – Runge-Kutta’s Methods (RK) • L INEAR R EGRESSION (OLS) P ROBLEMS – Calibration-free Calorimetry and Spectroscopy • G RADIENT - BASED N ONLINEAR R EGRESSION (NLR) M ETHODS – Steepest Descent Method (SD) – Newton-Raphson and Newton-Gauss Methods (NG) – Newton-Gauss Levenberg Marquardt Method (NGLM) • R EFERENCES MLS-S03 M ODEL I DENTIFICATION BY G RADIENT M ETHODS 2

  3. S CALAR , V ECTOR AND M ATRIX N OTATION a , , , A • Scalars ω Ω (1 × 1) = number of dim 1 written in lowercase/UPPERCASE italics a , ω • Vectors ( n × 1) = n -dim array (column vector) written in lowercase boldface A , • Matrices Ω ( n × m ) = array of dimensions n (rows) by m (columns) written in UPPERCASE BOLDFACE MLS-S03 M ODEL I DENTIFICATION BY G RADIENT M ETHODS 3

  4. S CALAR , V ECTOR AND M ATRIX O PERATIONS a A , α α • Scalar multiplication a b A B , + + • Addition a b A B , • Multiplication T T a , A • Transposition -1 -1 A A A A I • Inverse (identity matrix) = = rank ( ), A A ker A ( ) 0 = • Rank and null space (kernel) dim ( )= A rank ( ) A nullity ( ) A • Rank-nullity theorem + MLS-S03 M ODEL I DENTIFICATION BY G RADIENT M ETHODS 4

  5. P RINCIPAL C OMPONENT A NALYSIS (PCA) • Singular Value Decomposition (SVD) is a method to Y decompose a matrix into a product of orthonormal U T V column ( ) and row ( ) singular vectors weighted by S singular values ( ). T 2 Y U S V with S = = Λ • Principal Component Analysis (PCA) is a method to reduce Y the dimensionality of a matrix to its number of significant singular values. T with Y Y noise Y Y U S V − = ≈ = MLS-S03 M ODEL I DENTIFICATION BY G RADIENT M ETHODS 5

  6. L AW OF C ONSERVATION OF M ASS • “Nothing is lost, nothing is created, everything is transformed” – Lavoisier (1743-1794) T T    m t ( ) 1 m ( ) t 0 1 M n ( ) t 0 = = → = S S w u ( ) t T n  N r W W u n n n ( ) t V t ( ) ( ) t ( ) t ( ) t ( ), t (0) = ± ζ + − = out m m in in m t ( ) 0 u ( ) t T  c ( ) t N r ( ) t W ( ) t W ( ) ( t c t ), c (0) c = ± ζ + − ω = in m c i n V t ( ) 0 T T 1 ( ) t ( )  1 u ( ) t ζ  u ( ) t V t ( )  ( ) t m t  ( )  ( ) t with ( ) t ρ , V t ( ) V t ( ) ρ p m ω = + = p in ± − = − out m m t ( ) V t ( ) m t ( ) m t ( ) ( ) t m t ( ) ( ) t ρ ρ  T T and m t ( ) 1 u ( ) t u ( ) t 1 ( ) t = − ± ζ p in out p m m MLS-S03 M ODEL I DENTIFICATION BY G RADIENT M ETHODS 6

  7. L AW OF C ONSERVATION OF E NERGY • “Any theory which demands the annihilation of energy , is necessarily erroneous” – Joule (1818-1889)  T = 1 q Q t ( ) 0 q ( ) t ( ) t = → acc  m t c t T t ( ) ( ) ( ) q q q q q q q , (0) T T = ± + + − + − = p r m ex in loss h out 0 T h r with q t ( ) V t ( )( ) ( ) t , = −Δ r r T q ( ) t ( h ) ( t ) , = −Δ ζ m m m ( ) q t UA T T t ( ) ( ) , = − ex j ( ) T q ( ) t c u ( ) t T T ( ) , t = − in p in , in in q ( ) t c t u ( ) ( ) ( ) t T t = out p out MLS-S03 M ODEL I DENTIFICATION BY G RADIENT M ETHODS 7

  8. B EER ’ S L AW • “The absorbance of a solution is proportional to the product of its concentration and the distance light travels through it” – Beer (1825-1863), Lambert (1728- 1777) and Bouguer (1698-1758)  Y C A = = T Y C A with Y ( nt nw ), × T Units conversion: C c c [ ( ),..., ( t t )] ( nt S ) = × 1 n t A log (T), T I A a a = − = and [  ( w ),...,  ( w )] ( S nw ) = × 10 I 1 nw 0 MLS-S03 M ODEL I DENTIFICATION BY G RADIENT M ETHODS 8

  9. N UMERICAL I NTEGRATION OF ODE’ S • Euler’s method (implicit, explicit) was invented by the Swiss mathematician Euler (1707-1783) y y h y  h : integration stepsize = + 2 O h ( ) + i 1 i + • Runge-Kutta’s methods (RK2, RK4, explicit, implicit) were elaborated by Runge (1856-1927) and Kutta (1867-1944) y y k k k k h ( +2 +2 + ) y y h y  1 = + 5 = + 3 O h ( ) O h ( ) + + + i 1 i 6 1 2 3 4 i 1 i 1 + i + 2 with k y  ( , t y ), =  with y y y ( , t y ) h = + 1 i i 1 i i i i 2 + 2 k y  ( t , y k ) h h = + + y  y  ( t , y ) h = + 2 i 2 i 2 1 1 i 2 1 i i + + k y  ( t , y k ), h h = + + 2 2 3 i 2 i 2 2 k y  ( t h , y h k ) = + + 4 i i 3 MLS-S03 M ODEL I DENTIFICATION BY G RADIENT M ETHODS 9

  10. R EGRESSION P ROBLEMS • A regression problem consists in minimizing the difference between y ˆ( , p p y ( ) t t , ) measured output variables and modeled output variables f g f t p ( , ) (the objective/cost function) by postulating a dynamic model and f c p p p p g ( ( , t ), ) an output model , and adjusting the parameters (and ). f g f g   ( ) p p y y ˆ p p { , }* arg min ( ), ( , t t , )   = φ f g f g   p , p f g  s.t. ˆ c p p ( , t ) f t ( , ) = f f ( ) y ˆ( , t p p , ) g c ( t , p ), p = f g f g φ • In least-squares problems, is defined as the sum of squared residuals ˆ T ssq = vec R ( ) vec R ( ) R Y Y = − ( with ) and the following matrices are defined: ˆ ˆ T T T Y [ ( ),..., ( y t y t )] , Y [ ( , ˆ y t p p , ),..., ( y ˆ t , p p , )] , C [ ( , c t p ),..., ( c t , p )] = = = 1 nt 1 f g nt f g 1 f nt f MLS-S03 M ODEL I DENTIFICATION BY G RADIENT M ETHODS 10

  11. S YSTEMS OF L INEAR E QUATIONS • A systems of linear equations can be written in matrix  a x  a x y + + =  1,1 1 1, n n 1  S :     A x y  =  a x  a x y + + =  m ,1 1 m n , n m A ( m n ), ( x n 1) y ( m × 1) × × with the regressors and the regressands • The number of solutions of S is: ¥ m < n when underdetermined system  1 1 m = n x A y − determined system = ¥ m > n overdetermined system MLS-S03 M ODEL I DENTIFICATION BY G RADIENT M ETHODS 11

  12. L INEAR R EGRESSION (LR, OLS) For univariate data (data organized in a vector y ), a linear model relating • the n independent variables (regressors, x ) to the m > n dependent variables (regressands, y ) can be constructed as: A ( m n ), ( x n 1) y ( m × 1) y A x × × = with and { } T T 1 T x * arg min vec Ax ( y ) vec Ax ( y ) A + y with A + ( A A ) − A = − − = = x A + rank ( )= A dim ( )= A n The left pseudo-inverse exists onl y if For multivariate data (data organized in a matrix Y ), the linear model • relating the n ∙ w regressors X to the m ∙ w regressands Y is built as: Y A X X ( n w ) Y ( m w ) = × × with and { } T X * arg min vec AX ( Y ) vec AX ( Y ) A + Y = − − = x MLS-S03 M ODEL I DENTIFICATION BY G RADIENT M ETHODS 12

  13. L EFT OR R IGHT P SEUDO -I NVERSE ? T 1 T A + ( A A ) − A rank ( ) A dim ( ) A = = • Left pseudo-inverse { }  T Y A X X * arg mi X vec AX n ( Y ) vec AX ( Y ) A + Y = = − − =  y C a a * C + Y = = Spectroscopy : rank ( ) C S =  Y C A * A C + Y = =  * q R ( h ) h R + q rank ( R ) R Calorimetry : = −Δ −Δ = = r v r r v r v T T 1 X + X XX − rank ( ) X dim ( ) X ( ) = = • Right pseudo-inverse { }  T Y A X A A vec AX Y vec AX Y YX + * arg mi n ( ) ( ) = = − − =  rank ( ) A S Y C A C Y A + * = = = Spectroscopy : Y ( nt nw ), ( C nt S ), ( A S nw ), q ( nt 1), R ( nt R ), h ( R 1) with × × × × × Δ × r v MLS-S03 M ODEL I DENTIFICATION BY G RADIENT M ETHODS 13

  14. E XPLICIT vs I MPLICIT C ALIBRATION • In explicit calibration, a static calibration set is used to construct a calibration model from which concentrations are predicted for dynamic experiments. ˆ ˆ   ˆ   Y C A A C Y + C Y A + = = = • In implicit calibration (i.e. calibration free), dynamic experiments are used as an internal calibration set to eliminate the (static) linear counter-part A . ˆ ˆ ˆ +   ˆ         Y C A A C Y Y C C Y + = = = The implicit calibration can even be used in case of rank-deficient data, i.e. when rank( C ) < S MLS-S03 M ODEL I DENTIFICATION BY G RADIENT M ETHODS 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend