p
play

P - PowerPoint PPT Presentation

using chiral perturbation theory 2018.9.11-12 ELPH C023 in P-wave pion-nucleus interaction Effects of wavefunction renormalization


  1. using chiral perturbation theory』 2018.9.11-12 ELPH研究会 C023 『原子核中におけるハドロンの性質とカイラル対称性の役割』 in P-wave pion-nucleus interaction 『Effects of wavefunction renormalization P波成分に対する波動関数くりこみの影響 カイラル摂動論を用いたπ中間子-原子核相互作用の Tokyo Metropolitan University K. Aoki � Tokyo Institute of Technology D. Jido � Tottori University N. Ikeno � Nara Women ’ s University S. Hirenzaki

  2. ������ �������� ����� ����� ������ �������� ����� ����� π-nucleus experimental data 2 pion-nucleus elastic scattering K. Suzuki et al. PRL92, 072302 (2004) πN scattering length Friedman, et al. PRL93, 122302(2004) linear density approximation is not valid. Fits to pionic atom π-nucleus system: In-medium changes of π - N interaction π-nucleus S-wave optical potential [ linear density approximation ] ̶> ・mean free path in nuclear medium is as large as 5-10 fm ★low-energy π-nucleus interaction expected from πN interaction ・single step πN scattering should be dominant � � 1 + ω π 2 ω π V opt = − 4 π [ b 0 ( ρ p + ρ n ) + b 1 ( ρ p − ρ n )] M N b fit 0 , b fit b free , b free 1 0 1 ρ e ff ∼ 0 . 6 ρ 0 R = b free R = b free 1 1 = 0 . 68 = 0 . 78 ± 0 . 05 b fit b fit 1 1 b free ρ → Xb free ρ

  3. NG boson ーNG bosons are written as their energy (momentum) expansion kinetic energy term correction to renormalization Wavefunction ★Optical potential in terms of wavefunction renormalization. ・self-energy Study in-medium pion properties by the effects of wavefunction renormalization ーWe expect that NG boson wavefunction renormalization is large ーNG boson-nucleon interaction has strong energy dependence Deeply bound pionic atom ーChiral perturbation theory (low-energy QCD effective theory) For NG bosons, such as pion…… wavefunction renormalization is large. 2. When self-energy (optical potential) has strong energy-dependence, 1. One of the higher order corrections beyond linear density approximation. ★Wavefunction renormalization ・energy ・momentum 3 Wavefunction renormalization � � � � ∂ Π � � � 1 + ∂ Π ∂ω 2 + ∂ Π 2 m π V opt = Π − ∇ ∇ Π ∂ω 2 ∂ q 2 ω q

  4. 4 Our study ①Effects of wavefunction renormalization in P-wave pion-nucleus interaction. ②Correction to kinetic energy term correction to kinetic energy term

  5. �� �� �� �� �� �� �� �� �� �� �� �� � ������� ������� � ������ �� �� �� �� �� �� � ������� ������� � ������ 5 Kolomeitsev, Kaiser, Weise, PRL90, 092501 (2003) Jido, Hatsuda, Kunihiro, PRD63, 011901 (2001); PLB670, 109 (2008) ★P-wave term S-wave term correction to kinetic energy term ①Effects of wavefunction renormalization in P-wave pion-nucleus interaction. Our study ②Correction to kinetic energy term Partial wave expansion up to the P-wave Z = 1 + ∂ Π p � ′ Π = Π S + Π P ⃗ p cm · ⃗ cm � � ∂ω 2 = 1 + ∂ Π S ∂ω 2 + ∂ Π P p � ′ � ∂ω 2 ⃗ p cm · ⃗ cm p � ′ = 1 + z S + z P ⃗ p cm · ⃗ cm � � 1 + ∂ Π � � � � p � ′ p � ′ Π = 1 + z S + z P ⃗ p cm · ⃗ Π S + Π P ⃗ p cm · ⃗ cm cm ∂ω 2 p � ′ = (1 + z S ) Π S + [(1 + z S ) Π P + z P Π S ] ⃗ cm + · · · p cm · ⃗ �

  6. � � � � � � 6 correction to ★P-wave term S-wave term kinetic energy term S-wave term Our study ★P-wave term coordinate space momentum space ②Correction to kinetic energy term ①Effects of wavefunction renormalization in P-wave pion-nucleus interaction. � � � � � 1 + ∂ Π � � � � p � ′ p � ′ Π = 1 + z S + z P ⃗ Π S + Π P ⃗ p cm · ⃗ p cm · ⃗ cm cm ∂ω 2 p � ′ = (1 + z S ) Π S + [(1 + z S ) Π P + z P Π S ] ⃗ p cm · ⃗ cm + · · · � � 1 + ∂ Π Π ( r ) = (1 + z S ) Π S + ∇ · [ − (1 + z S ) Π P − z P Π S ] ∇ ∂ω 2 = s ( r ) + ∇ · p ( r ) ∇

  7. � � � ★Klein-Gordon equation ★In case of <0 ̶> instability ★kinetic term should be >0 kinetic energy term kinetic energy term correction to correction to kinetic energy term 7 T. E. O. Ericson and F. Myhrer, Phys. Lett. 74B(1978)163 ①Effects of wavefunction renormalization in P-wave pion-nucleus interaction. ②Correction to kinetic energy term Our study ω 2 − m 2 π + ∇ 2 − 2 m π V opt ( r ) � � φ ( r ) = 0 � � 1 − p ( r ) + ∂ Π ∂ω 2 + ∂ Π ∇ 2 φ ( r ) + [ ω 2 − m 2 π − s ( r ) + · · · ] φ ( r ) = 0 ∂ q 2

  8. ★Lorentz-Lorentz correction ★potential parameters kinetic energy term correction to M. Ericson, T. E. O. Ericson, Ann. Phys. 36(66)496 the potential We compare real part of 8 ★kinematical factor ★linear density R. Seki and K. Masutani, PRC27(83)2799 ②Correction to kinetic energy term Our study ①Effects of wavefunction renormalization in P-wave pion-nucleus interaction. P-wave phenomenological potential (Ericson-Ericson type) 2 µV P ( r ) = 4 π ∇ · [ c ( r ) + � − 1 2 C 0 ρ 2 ( r )] L ( r ) ∇ � � c ( r ) = � − 1 c 0 [ ρ p ( r ) + ρ n ( r )] + c 1 [ ρ n ( r ) − ρ p ( r )] 1 b 0 = − 0 . 0283 m − 1 b 1 = − 0 . 12 m − 1 π π c 0 = 0 . 223 m − 3 c 1 = 0 . 25 m − 3 π π B 0 = 0 . 042 i m − 4 C 0 = 0 . 10 i m − 6 1 π π L ( r ) = λ = 1.0 3 πλ [ c ( r ) + � − 1 1 + 4 2 C 0 ρ 2 ( r )] � 1 = 1 + m π � 2 = 1 + m π 2 M N M N

  9. 9 Method ①Effects of wavefunction renormalization in P-wave pion-nucleus interaction. ②Correction to kinetic energy term ★How to construct self-energyΠ? STEP1 elementary process of π - -nucleus interactions ̶> πN elastic scattering amplitude STEP2 π - self-energy based onπ - N amplitude STEP3 Wavefunction renormalization Momentum derivative correction to kinetic energy term

  10. χ 2 fitting STEP1: πN elastic scattering amplitude Our study Born term(u-channel) NLO term Weinberg-Tomozawa term 10 differential cross section at T π = 25.8 MeV NLO term Born term(s-channel) Weinberg-Tomozawa term Chiral perturbation theory [low-energy QCD effective theory] π − p → π − p f π g A c 1 , c 2 , c 3 , c 4 π + p → π + p g A f π c 1 , c 2 , c 3 , c 4

  11. 11 STEP2: π - self-energy in nuclear medium based on π - N amplitude Model of self-energy (optical potential) ̶> linear density approximation ★πN elastic scattering amplitude ★π - self-energy (optical potential) assuming isospin symmetry Momentum derivative Our study STEP3: Wavefunction renormalization T π + p T π − p T π + p = T π − n 2 m π V opt = Π = − T π − p ρ p − T π − n ρ n Z = 1 + ∂ Π ∂ q 2 = − ∂ T π − p ∂ Π ∂ q 2 ρ p − ∂ T π − n ∂ω 2 ρ n = 1 − ∂ T π − p ∂ω 2 ρ p − ∂ T π − n ∂ q 2 ∂ω 2 ρ n � � � � � �

  12. 12 Results

  13. PLB 633 (2006) T pi = 25.8 MeV pion kinetic energy 13 H. Dens et al., Fig. 1 π − p → π − p differential cross section 2 T pi =25.8 MeV/c d � /d � [mb/sr] 1.5 1 0.5 0 0 30 60 90 120 150 180 � c.m. [deg] ����� c 1 = − 0 . 8 × 10 − 3 � c 2 = 2 . 8 × 10 − 3 � c 3 = − 4 . 1 × 10 − 3 � c 4 = 3 . 9 × 10 − 3 � [MeV − 1 ] χ 2 /N = 4 . 2

  14. T pi = 19.9 MeV Fig. 2 T pi = 43.3 MeV T pi = 37.3 MeV T pi = 32.0 MeV π − p → π − p differential cross section 2 2 T pi =19.9 MeV/c T pi =32.0 MeV/c d � /d � [mb/sr] d � /d � [mb/sr] 1.5 1.5 1 1 0.5 0.5 0 0 0 30 60 90 120 150 180 0 30 60 90 120 150 180 � c.m. [deg] � c.m. [deg] 2 2 T pi =37.3 MeV/c T pi =43.3 MeV/c d � /d � [mb/sr] d � /d � [mb/sr] 1.5 1.5 1 1 0.5 0.5 0 0 0 30 60 90 120 150 180 0 30 60 90 120 150 180 � c.m. [deg] � c.m. [deg]

  15. Fig. 3 differential cross section T pi = 25.8 MeV T pi = 19.9 MeV π + p → π + p 2 T pi =19.9 MeV/c d � /d � [mb/sr] 1.5 1 0.5 0 0 30 60 90 120 150 180 � c.m. [deg] 2 T pi =25.8 MeV/c d � /d � [mb/sr] 1.5 1 0.5 0 0 30 60 90 120 150 180 � c.m. [deg]

  16. 16 ★P-wave wavefunction renormalization is considerably small. threshold T π =0 Fig. 4 S-wave wavefunction renormalization for in-medium πN interaction. ★S-wave wavefunction renormalization gives 50% enhancement ∂ω = 1 − ∂ T π − p ∂ω 2 ρ p − ∂ T π − n 0.6 ∂ω 2 ρ n 121 Sn 0.5 p − ∂ T π − n 0.4 ∂ω 2 ρ n z S 0.3 Z = 1 + ∂ Π 0.2 = 1 − ∂ T π − p ∂ω 2 ∂ω 2 ρ p = 1 − ∂ T π − p ∂ω 2 ρ p − ∂ T π − n 0.1 ∂ω 2 ρ n 0 0 2 4 6 8 10 r [fm]

  17. ★P-wave derivative is considerably small. 17 threshold T π =0 Fig. 5 S-wave momentum derivative − ∂ T π − p ∂ q 2 ρ p − 0 121 Sn -0.1 -0.2 p − ∂ T π − n ρ n ∂ q 2 q -0.3 z S -0.4 − ∂ T π − p ∂ q 2 ρ p − ∂ T π − n ρ n ∂ q 2 -0.5 -0.6 0 2 4 6 8 10 r [fm]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend