outline
play

Outline I. Flags what is a flag? who cares? II. (commutative) - PowerPoint PPT Presentation

PO-set paths and q -commuting minors Aaron Lauve LaCIM - UQAM S eminaire de combinatoire et dinformatique math ematique le 7 avril 2006 http://www.lacim.uqam.ca/ lauve (Research) lauve@lacim.uqam.ca Outline I. Flags


  1. PO-set paths and q -commuting minors Aaron Lauve LaCIM - UQAM S´ eminaire de combinatoire et d’informatique math´ ematique le 7 avril 2006 http://www.lacim.uqam.ca/ ∼ lauve (“Research”) lauve@lacim.uqam.ca

  2. Outline I. Flags • what is a flag? • who cares? II. (commutative) Generic matrices • column-minor identities • homogeneous coordinate ring of the flag variety III. q -Generic matrices • row-quantum-minor identities • quantum flag variety IV. (noncommutative) Generic matrices • row-quasi-minor identities • specializations V. q -Commuting minors • “missing” relations • PO-set paths 1

  3. I. Flags • Fix: an integer n > 1 and a vector space V = C n . • Fix: a sequence of integers λ : n ≥ λ 1 > λ 2 > · · · > λ s ≥ 0 . Definition (Flag). A flag Φ of shape λ is a chain of subspaces Φ : 0 ⊆ V 1 � V 2 � · · · � V s ⊆ V satisfying λ i = codim V i = n − dim V i . Denote the collection of all flags of shape λ by Fl ( λ ) . 2

  4. I. Flags • Fix: an integer n > 1 and a vector space V = C n . • Fix: a sequence of integers λ : n ≥ λ 1 > λ 2 > · · · > λ s ≥ 0 . Definition (Flag). A flag Φ of shape λ is a chain of subspaces Φ : 0 ⊆ V 1 � V 2 � · · · � V s ⊆ V satisfying λ i = codim V i = n − dim V i . Denote the collection of all flags of shape λ by Fl ( λ ) . Example. Taking n = 6 and λ = (5 , 3 , 2) , Φ : span { v 1 } ⊆ span { v 1 , v 2 , v 3 } ⊆ span { v 1 , v 2 , v 3 , v 4 } is a flag when v 1 , . . . , v 4 are linearly independent. 3

  5. I. Flags • Fix: an integer n > 1 and a vector space V = C n . • Fix: a sequence of integers λ : n ≥ λ 1 > λ 2 > · · · > λ s ≥ 0 . Definition (Flag). A flag Φ of shape λ is a chain of subspaces Φ : 0 ⊆ V 1 � V 2 � · · · � V s ⊆ V satisfying λ i = codim V i = n − dim V i . Denote the collection of all flags of shape λ by Fl ( λ ) . Example. Taking n = 6 and λ = (5 , 3 , 2) , Φ : span { v 1 } ⊆ span { v 1 , v 2 , v 3 } ⊆ span { v 1 , v 2 , v 3 , v 4 } is a flag when v 1 , . . . , v 4 are linearly independent. • Choose a basis B for V and express Φ as a matrix A (Φ) . . . 4

  6. I. Flags • Φ : span { v 1 } ⊆ span { v 1 , v 2 , v 3 } ⊆ span { v 1 , v 2 , v 3 , v 4 }   a 11 a 12 a 13 a 14 a 15 a 16 V 1   a 21 a 22 a 23 a 24 a 25 a 26 V 2   A (Φ) =     a 31 a 32 a 33 a 34 a 35 a 36 V 2     a 41 a 42 a 43 a 44 a 45 a 46 V 3 5

  7. I. Flags • Φ : span { v 1 } ⊆ span { v 1 , v 2 , v 3 } ⊆ span { v 1 , v 2 , v 3 , v 4 }   a 11 a 12 a 13 a 14 a 15 a 16 V 1   a 21 a 22 a 23 a 24 a 25 a 26 V 2   A (Φ) =     a 31 a 32 a 33 a 34 a 35 a 36 V 2     a 41 a 42 a 43 a 44 a 45 a 46 V 3 6

  8. I. Flags • Φ : span { v 1 } ⊆ span { v 1 , v 2 , v 3 } ⊆ span { v 1 , v 2 , v 3 , v 4 }   a 11 a 12 a 13 a 14 a 15 a 16 V 1   a 21 a 22 a 23 a 24 a 25 a 26 V 2   A (Φ) =     a 31 a 32 a 33 a 34 a 35 a 36 V 2     a 41 a 42 a 43 a 44 a 45 a 46 V 3 7

  9. I. Flags • Φ : span { v 1 } ⊆ span { v 1 , v 2 , v 3 } ⊆ span { v 1 , v 2 , v 3 , v 4 }   a 11 a 12 a 13 a 14 a 15 a 16 V 1   a 21 a 22 a 23 a 24 a 25 a 26 V 2   A (Φ) =     a 31 a 32 a 33 a 34 a 35 a 36 V 2     a 41 a 42 a 43 a 44 a 45 a 46 V 3   ∗   ∗ ∗ ∗   • Unique up to change of basis! . . . multiplying by P λ =   on the left.   ∗ ∗ ∗     ∗ ∗ ∗ ∗ 8

  10. I. Who Cares?   · · · · · · a 11 a 12 a 1 n   a 21 a 22 a 2 n     A (Φ) = ( d = n − λ s )  . . .  . . .   . . .     · · · · · · a d 1 a d 2 a dn Representation Theory Notice that GL n ( C ) ( and its many important subgroups ) permutes Fl ( λ ) by right-multiplication. 9

  11. I. Who Cares?    a 11 a 12 a 13 a 14 A (Φ) =  a 21 a 22 a 23 a 24 Topology/Algebraic Geometry The space Fl ( λ ) is a (projective) algebraic variety and a CW-complex, described via Gaussian elimination (G.E.). Consider the case n = 4 , λ = (2) : � � G.E. Open cells: − → � � � � � � µ = (00) (10) (20) � � � � � � (11) (21) (22) 10

  12. I. Who Cares?    a 11 a 12 a 13 a 14 A (Φ) =  a 21 a 22 a 23 a 24 Topology/Algebraic Geometry The space Fl ( λ ) is a (projective) algebraic variety and a CW-complex, described via Gaussian elimination. Consider the case n = 4 , λ = (2) : Schubert cells Ω µ : � � � � � � µ = (00) (10) (20) � � � � � � (11) (21) (22) Partitions µ with | λ | = 2 parts and part-size at most n − 2 = 2 . Combinatorics The classes [Ω µ ] in the cohomology ring H • ( Fl ( λ )) are Schur polynomials!! 11

  13. II. (commutative) Generic Matrices Definition. Let X = ( x ij ) be an n × n matrix of commuting indeterminants. Call X a generic matrix (coordinate functions for a “generic point” in C n 2 ).   · · · x i 1 j 1 x i 1 j 2 x i 1 j d   · · · x i 2 j 1 x i 2 j 2 x i 2 j d   Definition. For I, J ∈ [ n ] d , put X I,J =   .  . . .  . . .   . . .     · · · x i d j 1 x i d j 2 x i d j d Let X J denote the special case I = (1 , 2 , . . . , d ) (take the first d rows of X ). Consider the column-minors of shape λ : M ( λ ) = { [ ] := det X I : n − | I | ∈ λ } . [ I ] Problem: Describe the relations R among the minors M ( λ ) . 12

  14. II. (commutative) Generic Matrices Answer (Schur ‘01, Hodge ‘43): The minors M ( λ ) satisfy the Young symmetry relations � ( − 1) ℓ ( L \ Λ | Λ) [ [ L \ Λ] [Λ | M ] ( Y L,M ) 0 = ][ ] Λ ⊆ L | Λ | = r for any 1 ≤ r and any L, M ⊆ [ n ] with | M | + r ≤ | L | − r ∈ n − λ . Moreover, writing M ( λ ) = { I 1 , . . . I N } , if F ( Z 1 , . . . , Z N ) is a polynomial which is zero on substitution Z i �→ [ [ I i ] ] , then F is algebraically dependent on the ( Y L,M ) . [ [12] ][ [34] ] − [ [13] ][ [24] ] + [ [23] ][ [14] ] = 0 . Example: Non-example: (Sylvester’s Identity) (det A 123 , 123 ) (det A 2 , 2 ) = (det A 12 , 12 ) (det A 23 , 23 ) − (det A 12 , 23 ) (det A 23 , 12 ) . 13

  15. III. q -Generic Matrices 2 3 a b 6 7 Definition. Call a matrix X q -generic if every 2 × 2 submatrix 5 satisfies: 6 7 6 7 6 7 c d 4 ( ← ) ba = q ab dc = q cd ( ↑ ) ca = q ac db = q bd ( ր ) cb = bc da = ad + ( q − q − 1 ) bc ( տ ) Define the quantum determinant by � ( − q ) − ℓ ( σ ) x i 1 j σ (1) x i 2 j σ (2) · · · x i d j σ ( d ) det q X I,J = σ ∈ S d for I, J ∈ [ n ] d , and let [ [ J ] ] now denote det q X J . Problem: Describe the relations R among the minors M q ( λ ) . 14

  16. III. q -Generic Matrices Answer (Taft-Towber ‘91): The set R is (algebraically) generated by the relations below: q -Alternating: ( ∀ I ∈ [ n ] d ) ] = ( − q ) − ℓ ( σ ) [ [ [ I ] [ σI ] ] if σ “straightens” I. q -Young symmetry: ( ∀ L, M ⊆ [ n ] , r > 0) s.t. | M | + r ≤ | L | − r � ( − q ) − ℓ ( L \ Λ | Λ) [ 0 = [ L \ Λ] ][ [Λ | M ] ] . ( Y L,M ) Λ ⊂ L, | Λ | = r ( ∀ I, J � [ n ]) s.t. | J | < | I | q -Straightening: � ( − q ) + ℓ (Λ | I \ Λ) [ [ [ J ] ][ [ I ] ] = [ J | I \ Λ] ][ [Λ] ] . ( S J,I ) Λ ⊆ I, | Λ | = | J | ] − 1 ] + 1 [ [12] ][ [34] q [ [13] ][ [24] q 2 [ [23] ][ [14] ] = 0 . Example: Non-examples: (cf. Goodearl, ‘05) 15

  17. IV. (noncommutative) Generic Matrices • Now let X be a matrix of noncommuting variables. Definition (Gelfand-Retakh ‘91). The ( ij ) -quasideterminant | X | ij is defined whenever X ij is invertible, and in that case, � � � � � � � � | X | ij = � � � � � � � � � � 16

  18. IV. (noncommutative) Generic Matrices • Now let X be a matrix of noncommuting variables. Definition (Gelfand-Retakh ‘91). The ( ij ) -quasideterminant | X | ij is defined whenever X ij is invertible, and in that case, � � � � � � � � − 1 · | X | ij = = − · � � � � � � � � � � • 2 × 2 Example: � � � a 11 a 12 � = a 12 − a 11 a − 1 � � | A | 12 = 21 a 22 . � � a 21 a 22 � � � � 17

  19. IV. (noncommutative) Generic Matrices • It is better to take ratios of quasideterminants as “column-minor” replacements Definition. Given an n × n matrix X and a partition λ , the column-minors are given by � � � ij ( X ) := | X i ∪ K | − 1 p K M quasi ( λ ) = di | X j ∪ K | dj � i, j ∈ [ n ] , K ⊆ [ n ] \ i, n − 1 − | K | ∈ λ � ucker Relations (Gelfand-Retakh ‘97, L. ’04): If L, M ⊆ [ n ] , i ∈ [ n ] \ M , Quasi-Pl¨ | M | ≤ | L | − 1 , then: ij ( X ) p L \ j � p M 1 = ji ( X ) . ( P i,L,M ) j ∈ L Problem: Describe the relations R satisfied by M quasi • Need to expand search to rational expressions, not just algebraic ones. • some are known. . . maybe all? 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend