outline
play

Outline Basic Models Wed - PDF document

College Toegepaste Quantumchemie 2017 KS-DFT Chemische Binding Reactiviteit F. Matthias Bickelhaupt Outline Basic Models Wed 4 Oct 1. KS MO theory and Activation


  1. College Toegepaste Quantumchemie 2017 KS-DFT – Chemische Binding – Reactiviteit F. Matthias Bickelhaupt Outline Basic Models –––––––––––––––––––––––– Wed 4 Oct 1. KS MO theory and Activation Strain model ASM in action : bond activation Structure, Bonding & Reactivity ––––– Wed 11 Oct 2. Bite Angle and Bite-Angle Flexibility 3. d regime and s regime catalysts 30

  2. Part 2 Wed 11 Oct 31 Fragment-oriented Design of Catalysts for C–X Activation 1: Intrinsic reactivity: M M + CH 3 –X M X X 2: � Improve � with ligands: M L n M L n + CH 3 –X M L n X X J. Chem. Theory Comput. 2005 , 1 , 286 32 J. Organomet. Chem. 2005 , 690 , 2191

  3. 2 - Bite Angle & Bite-Angle Flexibility 33 Bite Angle: steric nature 34

  4. Bidentate Ligands and the Steric Nature of the Bite Angle L M L Methane C–H activation: 180° • ligands raise barriers M L L < 180° • smaller bite angle è lower barrier Chem. Eur. J. (communication) 2009 , 15 , 6112 35 ChemPhysChem. 2007 , 8 , 1170 Bidentate Ligands and the Steric Nature of the Bite Angle Bite-Angle Effect according to literature : • ligands push d AOs up è better HOMO–LUMO interaction • this view is not entirely σ * C-X " d π " exact Chem. Eur. J. (communication) 2009 , 15 , 6112 36 ChemPhysChem. 2007 , 8 , 1170

  5. Bidentate Ligands and the Steric Nature of the Bite Angle Bite-Angle Effect: Activation Strain analyses : • HOMO–LUMO interaction only marginally improved Chem. Eur. J. (communication) 2009 , 15 , 6112 37 ChemPhysChem. 2007 , 8 , 1170 Ligands 38 J. Organomet. Chem. 2005 , 690 , 2191

  6. Bidentate Ligands and the Steric Nature of the Bite Angle Bite-Angle Effect: Activation Strain analyses : • HOMO–LUMO interaction marginally improved • Instead: Strain reduced by building it into catalyst Chem. Eur. J. (communication) 2009 , 15 , 6112 Org. Biomol. Chem. 2010 , 8 , 3118 39 Nature Chem. 2010 , 2 , 417 Variation M and L • Oxidative addition with non-chelating d 10 -ML 2 complexes • Metal variation : metals around Pd in the periodic table: • Ligand variation : NH 3 , PH 3 or CO Co – Cu + Ni Rh – Pd Ag + Ir – Pt Au + • Text Books: d 10 -ML 2 is in general linear M M L M L' L L' L L' ChemistryOpen 2013 , 2 , 106

  7. Non-Linear d 10 -ML 2 L-M-L ∆ E lin L-M-L ∆ E lin L-M-L ∆ E lin Co(NH 3 ) 2– Cu(NH 3 ) 2+ 180 0 Ni(NH 3 ) 2 180 0 180 0 Co(PH 3 ) 2– Cu(PH 3 ) 2+ 132 6 Ni(PH 3 ) 2 180 0 180 0 Co(CO) 2– 129 20 Ni(CO) 2 145 2 Cu(CO) 2+ 180 0 Rh(NH 3 ) 2– Ag(NH 3 ) 2+ 180 0 Pd(NH 3 ) 2 180 0 180 0 Rh(PH 3 ) 2– 141 2 Pd(PH 3 ) 2 180 0 Ag(PH 3 ) 2+ 180 0 Rh(CO) 2– 131 10 Pd(CO) 2 156 1 Ag(CO) 2+ 180 0 Ir(NH 3 ) 2– 180 0 Pt(NH 3 ) 2 180 0 Au(NH 3 ) 2+ 180 0 Ir(PH 3 ) 2– 144 2 Pt(PH 3 ) 2 180 0 Au(PH 3 ) 2+ 180 0 Ir(CO) 2– Au(CO) 2+ 134 13 Pt(CO) 2 159 1 180 0 ChemistryOpen 2013 , 2 , 106 Non-Linear d 10 -ML 2 L-M-L ∆ E lin L-M-L ∆ E lin L-M-L ∆ E lin Co(NH 3 ) 2– Cu(NH 3 ) 2+ 180 0 Ni(NH 3 ) 2 180 0 180 0 Co(PH 3 ) 2– Cu(PH 3 ) 2+ 132 6 Ni(PH 3 ) 2 180 0 180 0 Co(CO) 2– 129 20 Ni(CO) 2 145 2 Cu(CO) 2+ 180 0 Rh(NH 3 ) 2– Ag(NH 3 ) 2+ 180 0 Pd(NH 3 ) 2 180 0 180 0 Rh(PH 3 ) 2– 141 2 Pd(PH 3 ) 2 180 0 Ag(PH 3 ) 2+ 180 0 Rh(CO) 2– 131 10 Pd(CO) 2 156 1 Ag(CO) 2+ 180 0 Ir(NH 3 ) 2– 180 0 Pt(NH 3 ) 2 180 0 Au(NH 3 ) 2+ 180 0 Ir(PH 3 ) 2– 144 2 Pt(PH 3 ) 2 180 0 Au(PH 3 ) 2+ 180 0 Ir(CO) 2– 134 13 Pt(CO) 2 159 1 Au(CO) 2+ 180 0 ChemistryOpen 2013 , 2 , 106

  8. Non-Linear d 10 -ML 2 L-M-L ∆ E lin L-M-L ∆ E lin L-M-L ∆ E lin Co(NH 3 ) 2– Cu(NH 3 ) 2+ 180 0 Ni(NH 3 ) 2 180 0 180 0 Co(PH 3 ) 2– Cu(PH 3 ) 2+ 132 6 Ni(PH 3 ) 2 180 0 180 0 Co(CO) 2– 129 20 Ni(CO) 2 145 2 Cu(CO) 2+ 180 0 Rh( NH 3 ) 2– Ag(NH 3 ) 2+ 180 0 Pd(NH 3 ) 2 180 0 180 0 Rh( PH 3 ) 2– 141 2 Pd(PH 3 ) 2 180 0 Ag(PH 3 ) 2+ 180 0 Rh( CO ) 2– 131 10 Pd(CO) 2 156 1 Ag(CO) 2+ 180 0 Ir(NH 3 ) 2– 180 0 Pt(NH 3 ) 2 180 0 Au(NH 3 ) 2+ 180 0 Ir(PH 3 ) 2– 144 2 Pt(PH 3 ) 2 180 0 Au(PH 3 ) 2+ 180 0 Ir(CO) 2– Au(CO) 2+ 134 13 Pt(CO) 2 159 1 180 0 better π -accepting ligand à smaller bite angle Non-Linear d 10 -ML 2 L-M-L ∆ E lin L-M-L ∆ E lin L-M-L ∆ E lin Co(NH 3 ) 2– Cu(NH 3 ) 2+ 180 0 Ni(NH 3 ) 2 180 0 180 0 Co(PH 3 ) 2– Cu(PH 3 ) 2+ 132 6 Ni(PH 3 ) 2 180 0 180 0 Co(CO) 2– 129 20 Ni(CO) 2 145 2 Cu(CO) 2+ 180 0 Rh(NH 3 ) 2– Ag(NH 3 ) 2+ 180 0 Pd(NH 3 ) 2 180 0 180 0 Rh(PH 3 ) 2– 141 2 Pd(PH 3 ) 2 180 0 Ag(PH 3 ) 2+ 180 0 Rh (CO) 2– 131 10 Pd (CO) 2 156 1 Ag (CO) 2+ 180 0 Ir(NH 3 ) 2– 180 0 Pt(NH 3 ) 2 180 0 Au(NH 3 ) 2+ 180 0 Ir(PH 3 ) 2– 144 2 Pt(PH 3 ) 2 180 0 Au(PH 3 ) 2+ 180 0 Ir(CO) 2– 134 13 Pt(CO) 2 159 1 Au(CO) 2+ 180 0 better π -backdonating metal à smaller bite angle

  9. ML–L Bonding Analysis weak " π ∗ " " π ∗ " " s " " s " π ∗ π ∗ " d δ " π ∗ " d π " π ∗ " d σ " " d σ " " d δ " " d δ " " d π " " d π " strong σ σ " σ " " σ " π π " π " " π " " d π " π ∗ " d π " π ∗ Pd Pd OC Pd OC Pd CO OC OC CO CO 90º 180º C O bending provides access for π * to fresh d electrons ChemistryOpen 2013 , 2 , 106 Application to C–H Activation smaller bite à less cat. strain higher d à more stab. int. design principles ChemistryOpen. 2013 , 2 , 106 WIRES Comput. Mol. Sci. 2015 , 5 , 324

  10. Bite-Angle Flexibility: “it is not about the angle” 47 Steric Attraction ! • Crank up steric bulk Pd(PR 3 ) 2 • Since Pd(P H 3 ) 2 is linear, all are... or not ?? R = H: Yes • • R = Me: Yes R = iPr: Yes • R = tBu: Yes • • R = Cy: No ACS Catalysis 2015 , 5 , 5766 WIRES Comput. Mol. Sci. 2015 , 5 , 324

  11. Steric Attraction ! big surfaces stick together through Van der Waals forces “Anisotropic Bulk” + Room = Steric Attraction Bite-Angle Flexibility • Energy profiles for bending Pd(PR 3 ) 2 Dispersion pulls minimum to 148° ... ... 132° for Pd(PPh 3 ) 2 !

  12. Application to C–H Activation More flexible bite angle à less activation strain The "right bulk" provides steric protection + low barrier 51 3 - Electronic Regimes of Catalysts 52

  13. Electronic Regimes E ∆ E strain * C–H 0 d ∆ E ∆ E int M CH 4 RhCO – → RhPH 3 – ∆ ε HOMO ASM and MO work perfectly +0.6 eV ≠ E –3.4 kcal/mol ! è rational design, but... AgCO + → AgPH 3 + ∆ ε HOMO +1.7 eV ≠ E +9 kcal/mol What causes the opposite trend? ! Chem. Asian J. 2015 , 10 , 2272; WIRES Comput. Mol. Sci. 2015 , 5 , 324 Electronic Regimes Same electronic configuration, yet opposite effect on barrier: Change of electronic REGIME from d-regime to s-regime s catalyst tuning * C–H * C–H catalyst tuning d s C–H C–H d CH 4 M M CH 4 s- regime d- regime Chem. Asian J. 2015 , 10 , 2272; WIRES Comput. Mol. Sci. 2015 , 5 , 324

  14. Summary • Bite-angle effect on reactivity has steric origin... • What matters is: bending strain (or flexibility). • Opposite tuning behavior: d-regime or s-regime. 55 Take-Home Message • KS-MO & EDA : causal model of bonding mechanism • Activation Strain Model generalization to reactions E ∆ E strain ( ζ ) • Physical Understanding ∆ E ( ζ ) and Rational Design 0 ∆ E ( z ) = ∆ E strain ( z ) + ∆ E int ( z ) ∆ E int ( ζ ) 56 ζ X + Y TS XY

  15. Further Reading • Reviews in Computational Chemistry ; K. B. Lipkowitz, D. B. Boyd, Eds.; Wiley-VCH: New York, 2000 , Vol. 15, pp. 1-86 • Nature Chem. 2010 , 2 , 417 • Chem. Soc. Rev. 2014 , 43 , 4953 • WIRES Comput. Mol. Sci. 2015 , 5 , 324 • Angew. Chem. Int. Ed. 2017 , 56 , 10070 ( ! ) 57

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend