outline outline
play

Outline Outline 2 Joint Cumulative Distribution Function (4.1, - PowerPoint PPT Presentation

Outline Outline 2 Joint Cumulative Distribution Function (4.1, Joint Cumulative Distribution Function (4.1, Y&G) Joint Probability Mass Function (4.2, Y&G) Joint Probabilit Mass F nction (4 2 Y&G) 204312 PROBABILITY


  1. Outline Outline 2 � Joint Cumulative Distribution Function (4.1, � Joint Cumulative Distribution Function (4.1, Y&G) � Joint Probability Mass Function (4.2, Y&G) � Joint Probabilit Mass F nction (4 2 Y&G) 204312 PROBABILITY AND 204312 PROBABILITY AND RANDOM PROCESSES FOR � Marginal PMF (4.3, Y&G) COMPUTER ENGINEERS COMPUTER ENGINEERS � Joint Probability Density Function (4.4, Y&G) Lecture 6: Chapters 4.1-4.4 p 1st Semester, 2007 Monchai Sopitkamon, Ph.D. Joint Cumulative Distribution Function I Joint Cumulative Distribution Function II (4.1) (4.1) 3 4 � Experiments that produce two RVs, X and Y . � E.g., signal X emitted by a radio transmitter, and the g , g y , corresponding signal Y arriving at a receiver. � Observe Y and estimate X using prob. model f X Y ( x , y ) � Observe Y and estimate X using prob. model f X , Y ( x , y ) � E.g., strength of signal at a cell phone base station receiver Y and the distance X of the phone from the receiver Y and the distance X of the phone from the base station. � Joint CDF of RVs X and Y is F X , Y ( x , y ) = P ( X ≤ x , Y ≤ y ) Figure 4.1 (p. 154) The area of the ( X Y ) plane corresponding to the joint cumulative distribution function f The area of the ( X,Y ) plane corresponding to the joint cumulative distribution function f XY ( x , y ), ( x y )

  2. Joint Cumulative Distribution Function III Joint Probability Mass Function I (4.2) Joint Probability Mass Function I (4.2) (4.1) 5 6 � Joint prob. mass function of discrete RVs X and Y is: f f � For any pair of RVs X and Y = = = F ( x , y ) P ( X x , Y y ) � 0 ≤ F X , Y ( x , y ) ≤ 1 X , Y X , Y � { X = x , Y = y} is an event in an experiment where � F X ( x ) = P ( X ≤ x , Y ≤ ∞ ) = F X , Y ( x , ∞ ) there is a set of observations that leads to both X = � F Y ( y ) = P ( X ≤ ∞ , Y ≤ y ) = F X , Y ( ∞ , y ) � F ( y ) = P ( X ≤ ∞ Y ≤ y ) = F ( ∞ y ) x and Y = y. � F X , Y ( ∞ , ∞ ) = P ( X ≤ ∞ , Y ≤ ∞ ) =1 � To find P X , Y ( x , y ), we sum the probabilities of all X , Y � F X , Y ( − ∞ , y ) = F X , Y ( x, − ∞ ) = 0 outcomes of the experiment for which X = x and Y = y. � If x ≤ x 1 and y ≤ y 1 , then F X , Y ( x , y ) ≤ F X , Y ( x 1 , y 1 ) , , � Three ways to represent a joint PMF: a list, a matrix, and a graph. Joint Probability Mass Function II (4.2) Joint Probability Mass Function II (4.2) Joint Probability Mass Function III (4.2) Joint Probability Mass Function III (4.2) 7 8 � Ex.4.1: Two-IC Test � P ( S ) = 1, where S = sample space of the experiment Test two ICs one after the other. Possible outcomes are ∑ ∑ ∑ ∑ = accepted ( a ) and rejected ( r ). Assume all Ics are P ( x , y ) 1 � Or X , Y ∈ ∈ x S y S acceptable with prob. 0.9 and outcomes of successive X Y � P � P X , Y ( x , y ) ≥ 0 for all pairs x , y ( x y ) ≥ 0 for all pairs x y tests are independent. X counts the number of � For discrete RVs X and Y and any set B in the X , Y acceptable IC and Y counts the number of successful plane, the prob. of the event {( X , Y ) ∈ B } is: tests before a reject. b f j l th b f th t {( X Y ) B } i ∑ ∑ = ( ( ) ) ( ( , , ) ) P B P x y y X X , Y Y ∈ B ( x , y )

  3. Joint Probability Mass Function IV (4.2) Joint Probability Mass Function IV (4.2) Joint Probability Mass Function V (4.2) Joint Probability Mass Function V (4.2) 9 10 � Ex.4.2: Find the prob. of the event B that X = Y B ∩ S X , Y = {(0, 0), (1, 1), (2, 2)} , Therefore, P ( B ) = P X , Y (0, 0) + P X , Y (1, 1) + P X , Y (2, 2) = 0.01 + 0.09 + 0.81 0 0 0 09 0 = 0.91 Figure 4.2 (p. 157) Subsets B of the ( X,Y ) plane. Points ( X,Y ) ∈ S X,Y are marked by bullets. S b B f h ( X Y ) l P i ( X Y ) S k d b b ll Marginal PMF I (4.3) Marginal PMF I (4.3) Marginal PMF II (4.3) Marginal PMF II (4.3) 11 12 � Consider just one of the RVs (e.g., Y ) and ignore the � Ex.4.3: Find the marginal PMFs for the RVs X and Y . other one (e.g., X ). P X , Y ( x , y ) y = 0 y = 1 y = 2 x = 0 0.01 0 0 � For discrete RVs X and Y with joint PMF P X , Y ( x , y ), x = 1 0.09 0.09 0 ∑ ∑ marginal PMF of X : marginal PMF of X : = = F F ( ( x x ) ) P P ( ( x x , y y ) ) , x = 2 0 0 0.81 X X , Y ∈ y S y 2 2 = ∑ ∑ = ∑ ∑ = = ∑ ∑ P ( 0 ) P ( 0 , y ) 0 . 01 P ( 1 ) P ( 1 , y ) 0 . 18 marginal PMF of Y : marginal PMF of Y : = X X , , Y X X , , Y F F ( ( y y ) ) P P ( ( x x , y y ) ) . = = Y X , Y y 0 y 0 ∈ x S = ∑ X 2 = = ≠ P ( 2 ) P ( 2 , y ) 0 . 81 P ( x ) 0 x 0 , 1 , 2 X X , Y X = = y y 0 0 = ∑ = ∑ 2 2 = = P ( 0 ) P ( x , 0 ) 0 . 10 P ( 1 ) P ( x , 1 ) 0 . 09 Y X , Y Y X , Y = = x 0 x 0 = ∑ 2 = = ≠ P ( 2 ) P ( x , 2 ) 0 . 81 ( ) 0 0 , 1 , 2 P y y Y X , Y Y = x 0

  4. Marginal PMF III (4.3) Marginal PMF III (4.3) Joint Probability Density Function I (4.4) Joint Probability Density Function I (4.4) 13 14 � Ex.4.3 (cont.): � The joint PDF of the continuous RVs X and Y is a function f X,Y ( x , y ) with the property P X , Y ( x , y ) y = 0 y = 1 y = 2 P X ( x ) x = 0 0.01 0 0 0.01 ∫ ∫ x y = F ( x , y ) f ( u , v ) dvdu x = 1 0.09 0.09 0 0.18 X , Y X , Y − ∞ − ∞ x = 2 0 0 0.81 0.81 � The joint PDF f X,Y ( x , y ) measures prob. per unit P Y ( y ) 0.10 0.09 0.81 area, whereas the PDF f X ( x ) measures prob. per X unit length. = = ⎧ ⎧ 0 . 01 0 0 . 1 0 x y ⎪ ⎪ = = ⎪ ⎪ � f X Y ( x , y ) is a derivative of the CDF: � f X,Y ( x , y ) is a derivative of the CDF: 0 . 18 x 1 0 . 09 y 1 = = ⎨ ⎨ ⎨ ⎨ P P ( ( x x ) ) P P ( ( y y ) ) = = X Y 0 . 81 x 2 0 . 81 y 2 ⎪ ⎪ ∂ 2 ⎪ ⎪ F ( x , y ) ⎩ ⎩ 0 otherwise 0 otherwise = X , Y ( , ) f x y ∂ ∂ x ∂ ∂ X , , Y y Joint Probability Density Function II Joint Probability Density Function III (4.4) (4.4) 15 16 � Properties of the joint PDF f X,Y ( x , y ): � Ex.4.4: RVs X and Y have joint PDF ⎧ ≤ ≤ ≤ ≤ � f X,Y ( x , y ) ≥ 0 for all ( x , y ) c 0 x 5 , 0 y 3 , = = , ⎨ ⎨ f f ( ( x x , y y ) ) X , Y ∞ ∞ ⎩ � . ∫ ∫ 0 otherwise. = f ( x , y ) 1 X , Y − ∞ − ∞ Find the constant c and P ( A ) = P (2 ≤ X <3, 1 ≤ Y <3). � An event A corresponds to a region of the X , Y � An event A corresponds to a region of the X , Y From the fact that the integral of the joint PDF over the plane with the prob. of A being the double integral sample space is 1: = ∫ ∫ = ∫ ∫ of f X,Y ( x , y ) over the region of the X , Y plane of f ( x y ) over the region of the X Y plane 5 3 = = 1 1 c c dy dy dx dx 15 15 c c 0 0 corresponding to A . Therefore, Therefore, c = 1/15 c 1/15 � The prob. that the continuous RVs ( X , Y ) are in A is: Th b th t th ti RV ( X Y ) i A i = ∫ ∫ 1 ∫∫ = 3 3 = P ( A ) f ( x , y ) dx dy P ( A ) dv du 2 / 15 X , Y 2 1 15 15 A

  5. Joint Probability Density Function IV Joint Probability Density Function IV (4.4) (4.4) 17 18 � Ex.4.5: Find the joint CDF F X,Y ( x , y ) when X and Y � Ex.4.5: Find the joint CDF F X,Y ( x , y ) when X and Y have joint PDF have joint PDF ≤ ≤ ≤ ≤ ≤ ≤ ⎧ ⎧ 2 0 y x 1 , 2 0 y x 1 , = = = = ⎨ ⎨ ⎨ ⎨ f f ( ( x x , y y ) ) f f ( ( x x , y y ) ) X , Y X , Y ⎩ ⎩ 0 otherwise. 0 otherwise. f X,Y ( x , y ) = 2 F X,Y ( x , y ) = 0 F X,Y ( x , y ) = 1 Joint Probability Density Function IV Joint Probability Density Function IV (4.4) (4.4) 19 20 � Ex.4.5: Find the joint CDF F X,Y ( x , y ) when X and Y � Ex.4.5: Find the joint CDF F X,Y ( x , y ) when X and Y have joint PDF ≤ ≤ ≤ have joint PDF ≤ ≤ ≤ ⎧ ⎧ 2 0 y x 1 , 2 0 y x 1 , = = = = ⎨ ⎨ ⎨ ⎨ ( ( , ) ) ( ( , ) ) f f x x y y f f x x y y X , Y X , Y ⎩ 0 otherwise. ⎩ 0 otherwise. = ∫ ∫ = ∫ ∫ y x ∫ ∫ x x ∫ ∫ = − = 2 2 F ( x , y ) 2 du dv x F ( x , y ) 2 du dv 2 xy y X , , Y X , , Y 0 0 v v 0 0 v v

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend