once upon a time the process of structure in mtss
play

Once Upon a Time: The Process of Structure in MTSs Roger Leenders, - PowerPoint PPT Presentation

Once Upon a Time: The Process of Structure in MTSs Roger Leenders, Noshir Contractor, Leslie DeChurch A Network Approach to the study of MTS Antecedents? Consequences? A Network Approach to the study of MTS Antecedents


  1. Once Upon a Time: The Process of Structure in MTSs Roger Leenders, Noshir Contractor, Leslie DeChurch

  2. A Network Approach to the study of MTS Antecedents? ¡ Consequences? ¡

  3. A Network Approach to the study of MTS Antecedents ¡ • Informa3on ¡need ¡ • Loca3on ¡ • Team ¡culture ¡ • Task ¡dependence ¡

  4. A Network Approach to the study of MTS nodes: teams, tie: knowledge sharing • * ¡Some ¡teams ¡ perfectly ¡located ¡to ¡ be ¡innova3ve, ¡but ¡ not ¡to ¡be ¡efficient ¡ • * ¡Some ¡teams ¡ perfectly ¡located ¡to ¡ be ¡efficient, ¡but ¡not ¡ to ¡be ¡innova3ve ¡ • * ¡Others ¡good/bad ¡at ¡ neither ¡MTS ¡ performance ¡low ¡

  5. “Classic” Social Network Analysis Data requirements : single (aggregated) observation of a network

  6. Adding change: MTS Network Dynamics

  7. Longitudinal Social Network Analysis Behavior Most common: Markov chain + agent-based model For example: “network change can be explained by a tendency toward reciprocity, transitivity, and a preference for similarity in work commitment.”

  8. Longitudinal Social Network Analysis Data requirements : several observations of a network in a meaningful state Useful for : modeling how networks develop through a series of states

  9. Taking MTS Temporal Dynamics a Step Further: From Snapshots to the Movie * Increasingly we have access to (full) event data (e.g., sensor data, server logs, videotaped interaction) * Temporally binning data is a waste of beautiful data * The world changes in real time and step-by-step, so much is gained by modeling it that way * There is much variance to be explained in MTS performance, modeling the movie allows us to open the box for many new explanations and more detailed analysis

  10. A little bit of Greek event e = ( sender , receiver , weight , time ) The event sequence ( e 1 , . . . , e i − 1 ) determines event network G i Δ t e = time difference between two given events f ( e │ G e ; θ ) = f λ (sender e , receiver e , Δ t e │ G e ; θ ( λ ) ) * f µ ( w e │ sender e , receiver e ; G e , θ (µ) ) probability density that event probability density that the i ’th event happens e has weight w e —given the network G e after a waiting time of Δ t e for given sender and values for the weight-parameters θ ( µ ) and receiver—given the state of the network and given that the next event G e and the rate parameters θ ( λ ) . involves a e as source and b e as target.

  11. The essence of the relational event model The probability of event e i ( given G i ) is modeled so that the estimated parameters show: * which properties of the sequential structure of past events increase/decrease event rate (frequency)? * which properties of the sequential structure of past events increase/ decrease event weight (magnitude/type)? The model allows for parallel development of event networks and individual states (e.g., co-development of network ties and satisfaction) and can be applied to small and large multiteam systems. → originators: Butts (2008), Brandes et al., (2009)

  12. How to model event rates between A and B: some variables HISTORY FUTURE Habitual inertia TIME A B A B Hypothesis: The rate of communication of A to B increases with the past volume of communication from A to B

  13. How to model event rates between A and B: some variables HISTORY FUTURE Volume-Induced Reciprocity TIME A B A B Hypothesis: The rate of communication of B to A increases with the past volume of communication from A to B Some variations: reciprocity within a team, reciprocity between roles, reciprocity between teams

  14. How to model event rates between A and B: some variables HISTORY Interteam Mimicry FUTURE C A B Hypothesis: The rate of communication of A to B (on another team) increases with the past volume of communication from A's team mate C to B

  15. How to model event rates between A and B: some variables HISTORY Broker skipping FUTURE C A B Hypothesis: The rate of direct communication of A to B increases with the past volume of indirect communication from A to B through another MTS member

  16. How to model event rates between A and B: some variables TRUST Shared Value Induced Communication FUTURE COMM. C A B Hypothesis: The rate of communication of A to B increases with the similarity of their trust vis-a-vis other MTS members

  17. How to model event rates between A and B: some variables TASK DEPENDENCE Dependence-based communication FUTURE A B Hypothesis: The rate of communication of A to B increases with A's task dependence on B

  18. A small illustration (preliminary) • MTSs ¡performed ¡a ¡humanitarian ¡aid ¡task ¡based ¡on ¡the ¡real-­‑3me ¡strategy ¡ game, ¡“World ¡in ¡Conflict”. ¡ ¡ • Two ¡cross-­‑func3onal ¡teams ¡worked ¡to ¡ensure ¡bordering ¡regions ¡were ¡ passable ¡by ¡a ¡humanitarian ¡aid ¡convoy ¡protected ¡by ¡US ¡and ¡UN ¡teams. ¡ ¡ • Each ¡of ¡the ¡two ¡teams ¡worked ¡to ¡ensure ¡their ¡respec3ve ¡regions ¡was ¡safe ¡ from ¡enemies ¡in ¡the ¡areas ¡where ¡the ¡convoy ¡would ¡travel. ¡The ¡teams ¡ needed ¡to ¡coordinate ¡with ¡one ¡another ¡in ¡order ¡to ¡gather ¡and ¡share ¡ intelligence, ¡follow ¡rules ¡of ¡engagement, ¡and ¡neutralize ¡enemy ¡hotspots. ¡ • Each ¡par3cipant ¡was ¡seated ¡at ¡an ¡individual ¡PC-­‑worksta3on ¡and ¡wore ¡a ¡ microphone-­‑equipped ¡headset. ¡ • The ¡US ¡team ¡and ¡UN ¡team ¡were ¡located ¡in ¡different ¡rooms. ¡

  19. A participant communicates with his teammates to coordinate clearing a hazard to the convoy. All communication between team members is recorded.

  20. MTS Platform – Simulation Interface Zone ¡shading: ¡ Red ¡– ¡Insurgent ¡ Blue ¡– ¡IED ¡ Green ¡– ¡Safe ¡ Object ¡Loca3ons: ¡ Purple ¡square-­‑ ¡ convoy ¡loca3on ¡ Cyan ¡square ¡– ¡ player ¡loca3on ¡ Red ¡square ¡– ¡threat ¡ loca3on ¡ Yellow ¡square ¡– ¡ally ¡ loca3on ¡

  21. Flow of the Experiment Training ¡ Prac3ce ¡ Actual ¡Mission ¡ Phase ¡I ¡ Phase ¡II ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡Phase ¡III ¡ (15 ¡mins) ¡ (20 ¡mins) ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡(20mins) ¡ Performance ¡ Planning ¡Episode ¡ Episode ¡

  22. Some preliminary findings Overall: * habitual inertia is high: communication is self-reinforcing, follows clear self- reinforcing pattern * reciprocity is high: the more A has sent messages to B, the quicker B will respond to A * Interteam reciprocity is negative: this balances against general reciprocity: quick response to team members, but response speed is much lower when the messages come from a member of another team

  23. MTS reconfiguring itself Some teams were allowed to communicate freely among each other, but reconfigured themselves into a chain-like structure. What happened: * interteam mimicry became negative: increased efficiency in interteam communication patterns—increased time until A sends a message to B when C already does this a lot C C A A B B

  24. MTS reconfiguring itself * interteam inertia remains: the frequency and timeliness of communication between the teams is still maintained, but organized through informal role- specialization (boundary spanners) Chain Communication Completely Connected Communication Phantom Stinger Phantom Stinger A B A B C D C D

  25. Performance: aggressive Teams that score high on “aggressive” performance show a differential tendency for: * broker skipping (negative) C if the info is getting to B already, A won't spend his time on doing that as well A B * common allocator (positive) C If C gets his info from both A and B, then better send it to B directly A B

  26. Future directions * generalize to multiplex networks: -- media switching -- one kind of relationship triggering another * further integrating event network dynamics with emergent states * develop additional event structures * study larger MTS's * use findings from this type of analysis to further time-based theory

  27. Questions? We do:  Klik ¡om ¡de ¡opmaak ¡van ¡de ¡ overzichtstekst ¡te ¡bewerken ¡ What ¡sugges3ons ¡do ¡you ¡ - Tweede ¡overzichtsniveau ¡ have ¡for ¡developing ¡this ¡  Derde ¡overzichtsniveau ¡ further? ¡ - Vierde ¡ overzichtsniveau ¡  Vijfde ¡ overzichtsnivea u ¡  Zesde ¡ overzichtsnivea u ¡ Zevende ¡

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend