on vacuum stability without supersymmetry
play

On Vacuum Stability without Supersymmetry Brane dynamics, bubbles - PowerPoint PPT Presentation

On Vacuum Stability without Supersymmetry Brane dynamics, bubbles and holography Ivano Basile | SNS, Pisa | Cortona Young, May 2020 based on: hep-th/1811.11448 with J. Mourad and A. Sagnotti hep-th/1908.04352 with R. Antonelli


  1. On Vacuum Stability without Supersymmetry Brane dynamics, bubbles and holography Ivano Basile | SNS, Pisa | Cortona Young, May 2020 based on: • hep-th/1811.11448 with J. Mourad and A. Sagnotti • hep-th/1908.04352 with R. Antonelli • hep-th/1806.02289 with R. Antonelli and A. Bombini 1

  2. [credits to Kurzgesagt ↑ ] 2

  3. Non-SUSY 10d strings: vantage point? 1. Heterotic SO (16) × SO (16): NO SUSY (Alvarez–Gaume, Ginsparg, Moore, Vafa, 1986) 2. U (32) : Type 0’B closed + open : NO SUSY (Sagnotti, 1995) 3. USp (32) : closed + open (Sugimoto, 1999) “Brane SUSY Breaking” (Antoniadis, Dudas, Sagnotti, 1999) 10D couplings (Dudas, Mourad; Pradisi, Riccioni, 2000) Features • no tachyons • branes + orientifolds → residual tension V ( φ ) = V 0 e γ φ − → NO flat vacuum! • ∃ AdS × S flux backgrounds (Mourad, Sagnotti, 2016) are they stable? 3

  4. Low-energy description � � � d 10 x √− g 2( ∂φ ) 2 − V ( φ ) − e αφ R − 1 12 H 2 S eff = 3 + . . . AdS flux compactifications: • Constant dilaton • AdS 3 × S 7 (BSB ≃ 0’B), AdS 7 × S 3 (heterotic) • electric vs magnetic flux N of H 3 = dB 2 e φ , ( α ′ R ) ≪ 1 N ≫ 1 − → 4

  5. In orientifold models: AdS 3 × S 7 3 2 φ , coupling α = 1 to R-R 3-form Parameters : V = T e � 64 T D9 (BSB) from disk amplitude: T = 2 k 2 10 × 32 T D9 (0’B) • electric flux � S 7 ⋆ e φ H 3 N = • (super)gravity regime e φ ∝ N − 1 / 4 L 3 , R 7 ∝ N 3 / 16 • ratio of radii L 2 = 1 3 R 2 6 7 5

  6. In the heterotic model: AdS 7 × S 3 5 2 φ , coupling α = − 1 to NS-NS 3-form Parameters : V = Λ e from 1-loop torus amplitude: Λ = (modular integral) = O (1) α ′ • magnetic flux � N = S 3 H 3 • (super)gravity regime e φ ∝ N − 1 / 2 L 7 , R 3 ∝ N 5 / 8 • ratio of radii L 2 7 = 12 R 2 3 6

  7. Perturbative instabilities: Minkowski vs AdS m 2 < 0 → modes can grow AdS: BF bound (Breitenlohner, Freedman, 1982) scalar ≥ − ( d − 1) 2 m 2 4 L 2 AdS • some tachyons allowed! • extends to general fluctuations 7

  8. Perturbative instabilities: results (IB, Mourad, Sagnotti, 2018) AdS vacua: unstable scalar KK modes AdS 3 × S 7 • BSB & 0’B − → ℓ = 2 , 3 , 4 AdS 7 × S 3 • Heterotic − → ℓ = 1 Dudas-Mourad vacua (Dudas, Mourad, 2000) : pert. stable... • 9d static: ...but large corrections • 10d cosmology: ...except isotropy? δ g ij ( k = 0) ∼ A ij + B ij log η 8

  9. Non-perturbative instabilities expect instantons... B � �� � ( S inst. − S 0 ) Γ decay ∼ (det) × e − (Coleman, Callan, 1977), (Coleman, De Luccia, 1980) BUT: no global knowledge no SUSY! → any criteria? 9

  10. Non-perturbative instabilities: brane picture (Antonelli, IB, 2019) AdS vacua → flux tunneling (Brown, Teitelboim, 1987-1988), (Blanco-Pillado, Schwartz-Perlov, Vilenkin, 2009) E vac ∝ − N − 3 − N − 2 or N − → N − δ N : out of EFT • Instantons ↔ branes (D1 or NS5)? right charge & dim. • AdS → near-horizon of brane stack... − → brane-antibrane nucleation � � N µ p S E brane = τ p Area − e αφ R q Vol = B CdL extremum 10

  11. Consistency: the right branes � � 1 � p 1 − p + 1 u β 2 − 1 2 brane = τ p Ω p +1 L p +1 S E β √ 1 + u du ( β 2 − 1) p +1 2 2 0 Consistency: � µ p � − α • existence: nucl. parameter β ≡ v 0 g > 1 2 s τ p − α β = O ( N 0 ) − • semi-classical: → τ p = T p g 2 s − → relation for fundamental (and exotic) branes ! (Bergshoeff, Riccioni et al.) = T p σ = 1 + 1 2 α string τ string , p electric g σ s 11

  12. After tunneling: Lorentzian evolution probe p / ¯ p -brane in (Poincar´ e) AdS throat at pos. Z : � L � p +1 � � µ p V probe = τ p 1 + − v 0 Z T p � charge � for our string models: v 0 > 1! WGC : ր ր tension eff − → these non-SUSY branes feel the right forces 12

  13. Back-reaction: pinch-off at finite distance SO (1 , p ) × SO ( q ) geometry � √ g rr dr AdS p +2 × S q φ → ∞ φ = φ 0 S q � √ g rr dr < ∞ geodesic length: p = 8: recover 9d Dudas-Mourad 2 asymptotic free parameters: extremal tuning? 13

  14. (Top-down) holography? Dual “CFT”: (IR of) world-volume gauge theory? c D1 ∝ N 3 / 2 Toward small N : bubble RG? Recent developments: “de Sitter on a brane”? (Banerjee, Danielsson, Dibitetto, Giri, Schillo, 2018) → Λ 6 d ∝ 1 e.g. N NS5-branes in SO (16) × SO (16) − N 2 14

  15. AdS vacua: Flux tunneling: • weak coupling • vacuum bubbles • discrete ( N → g s , R ) • branes • non-SUSY • toward UV Brane picture • AdS ← → IR world-volume theory? • tunneling ← → renormalization group flows? • de Sitter on a brane? 15

  16. Take-home message SUSY breaking spontaneous dynamics 16

  17. Backup slides 17

  18. Perturbations and mixings Linearized analysis: AdS tensors + angular momenta ℓ (IB, Mourad, Sagnotti, 2018) • Tensors: no mixing − → stable � • Vectors: mixing, still stable � δ g µ i δ B µ i • Scalars: Einstein eqs. − → 2 constraints! δφ δ B 2 = ⋆ 3 dB δ g µν = A g (0) µν δ g ij = C g (0) ij δ g µ i = ∇ µ ∇ i D 18

  19. Linearized scalar equations: orientifold case � � 4 + 3 σ 3 + ℓ 3 A + 7 2 α σ 3 δφ − ℓ 3 L 2 3 � A − 3 ( σ 3 − 1) 2 ( σ 3 − 1) B = 0 � � 2 α 2 σ 3 + τ 3 + ℓ 3 δφ + α ℓ 3 L 2 3 � δφ + 2 α σ 3 A − 3 ( σ 3 − 1) 3 ( σ 3 − 1) B = 0 3 � B − 8 σ 3 A + 4 α σ 3 δφ − ℓ 3 L 2 3 ( σ 3 − 1) B = 0 where: σ 3 = 1 + 3 L 2 3 τ 3 = L 2 3 V ′′ ℓ 3 = ℓ ( ℓ + 6) , , 0 R 2 7 19

  20. Linearized scalar equations: heterotic case 7 � A − [ ℓ 7 ( σ 7 − 3) + 5 σ 7 + 12] A + 5 2 α σ 7 δφ − 3 ℓ 7 L 2 2 ( σ 7 − 3) B = 0 � 2 α 2 σ 7 + τ 7 + ℓ 7 ( σ 7 − 3) � L 2 7 � δφ + 6 α σ 7 A − δφ + α ℓ 7 ( σ 7 − 3) B = 0 L 2 7 � B − 8 σ 7 A + 4 α σ 7 δφ − ℓ 7 ( σ 7 − 3) B = 0 where: σ 7 = 3 + L 2 7 τ 7 = L 2 7 V ′′ ℓ 7 = ℓ ( ℓ + 2) , , 0 R 2 3 20

  21. Results: violations of BF bounds BSB Model 4 Scalars ( AdS 3 × S 7 ) BSB Model Vectors 3 • Scalars: ℓ = 2 , 3 , 4 2 • Vectors: ℓ = 1 massless (KK) 1 0 l ( AdS 7 × S 3 ) Heterotic Model 0 1 2 3 4 5 Heterotic Model • Scalars: ℓ = 1 Scalars 150 Vectors • Vectors: ℓ = 1 massless (KK) 100 50 Orbifolds: can get rid of unstable modes... → vacuum bubbles? (Horowitz, Orgera, Polchinski, 2008) 0 0 1 2 3 4 [also cosmological vacuum: stable, but isotropy breaking?] (IB, Mourad, Sagnotti, 2018) 21

  22. Non-perturbative instabilities: flux tunneling • Gravity in D = p + 2 + q dims + fluxes: S q reduction ds 2 = R − 2 q p +2 + R 2 d Ω 2 p ds 2 q • Reduced action: ( p + 2)-Einstein frame � 1 � � � R p +2 − 2Λ R − 2 q d p +2 x S p +2 = − g p +2 p 2 κ 2 p +2 → E vac ∝ − R − 2 q p − 2 vacuum energy − E vac depends on flux... ...higher-dim. instantons, flux transitions (Blanco-Pillado, Schwartz-Perlov, Vilenkin, 2009) 22

  23. Many branes: background geometry SO (1 , p ) × SO ( q ) symmetry: φ ( r ) , v ( r ) , b ( r ) ds 2 = e p +1 v − 2 q p b dx 2 1 , p + e 2 v − 2 q p b dr 2 + e 2 b R 2 2 0 d Ω 2 q , φ = φ ( r ) , N p ( p +2) b d p +1 x ∧ dr , H p +2 = c e 2 v − q c ≡ e αφ ( R 0 e b ) q (Constrained) Toda-like system: (+ , − , +) kinetic term w/ potential n 2 b + q ( q − 1) p b − e − αφ +2 v − 2 q ( p +1) e 2 v − 2( D − 2) U = − T e γφ +2 v − 2 q b p p 2 R 2 q R 2 0 0 23

  24. Geometry: near-horizon Recover original AdS p +2 × S q with [ r < 0] � R � − q L 1 e b = R p e v = φ = φ 0 , − r , p + 1 R 0 R 0 δφ , δ v , δ b ∝ ( − r ) λ Radial perturbations: √ √ � � � � � � − 1 , 1 ± 13 , 1 ± 5 2 2 { λ } BSB = , { λ } het = − 1 , ± 2 3 , 1 ± 2 2 2 3 − → two extremality-breaking deformations [two asymptotic fine-tunings?] 24

  25. Geometry: “far-horizon” Away from branes [ r > 0] : assume U ∼ U T = − T e γφ +2 v − 2 q p b Solutions as r → ∞ : φ , v , b ∝ y ( r ) + subleading y ′′ ∼ ˆ T e Ω y + L r 1 2 Ω y ′ 2 + L y ′ ∼ ˆ T e Ω y + L r − M γ 2 − 2( D − 1) � γ 2 − γ 2 � where Ω = D − 2 = D − 2 (IB, Mourad, Sagnotti, 2018) crit 8 D − 2 8 • Orientifolds: φ , v , b ∝ r 2 (due to Ω = 0) • Heterotic: φ , v , b ∝ log( r 0 − r ) 25

  26. Holography of vacuum bubbles (“Bubbleography”) Non-SUSY brane instantons at low energy: vacuum bubbles Spontaneous, irreversible process AdS 3 ( L − ) − → AdS 3 ( L + ) dual “central charge” c − < c + ...holographic description? (Antonelli, IB, Bombini, 2018) • (AdS) vacuum bubbles ← → boundary RG flow • Bubble nucleation ← → ( non-local ) RG trigger • Displaced bubble ← → entanglement pattern of boundary 26

  27. AdS + Conformal singularity AdS − nucleation Bulk → expanding bubble and geodesics Boundary → relevant deformations and RG 27

  28. Our check: bubble entanglement entropy (in 3d) − cosh 2 ρ ± d τ 2 ± + sinh 2 ρ ± d φ 2 � � ds 2 ± = L 2 ± + d ρ 2 ± ± • Thin-wall: geodesic is hyperbolic polygonal length = 2 L − Λ + 2 L − log(cosh ρ − − sinh ρ − cos( θ B − θ A )) + L + cosh − 1 (cosh 2 ρ + − sinh 2 ρ + cos(2 θ B )) + O (Λ − 1 ) • Angle at bubble θ B : no-kink condition gluing condition: L − sinh ρ − = L + sinh ρ + 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend