on un balanced p lya urns analytic combinatorics strikes
play

On (un)-balanced Plya urns: Analytic Combinatorics strikes again - PowerPoint PPT Presentation

On (un)-balanced Plya urns: Analytic Combinatorics strikes again Basile Morcrette May, 30 AofA 2013, Spain Dedicated to Philippe Flajolet. 1/16 Knuths strings Start with m loops in a box. At each step, pick one at random, cut it and


  1. On (un)-balanced Pólya urns: Analytic Combinatorics strikes again Basile Morcrette May, 30 AofA 2013, Spain Dedicated to Philippe Flajolet. 1/16

  2. Knuth’s strings Start with m loops in a box. At each step, pick one at random, cut it and place it back in the box. Q : Average length of a string after m cuts ? Januar 10, 2011 : D.E. Knuth to P. Flajolet : “ I think you wil find [it] amusing.” Philippe thought : “ Look at the urn behind !” loop := black ball string := white ball � − 1 � 1 K = ( a 0 , b 0 ) = ( m , 0 ) 0 1 oh... unbalanced ! 2/16

  3. Balanced Pólya urns [Flajolet–Gabarró–Pekari, 2005 ; Flajolet–Dumas–Puyhaubert, 2006] 3/16

  4. Pólya balanced additive urns � a � b Pólya urn a , d ∈ Z , b , c ∈ N c d Initial configuration : ( a 0 , b 0 ) , a 0 black balls, b 0 white balls Balanced urn σ := a + b = c + d (deterministic total number of balls) Additive σ ≥ 0 Definition History of length n : sequence of n drawings H n , i , j x i y j z n � H ( x , y , z ) = n ! n , i , j H n , i , j is the number of histories of length n , ending in ( i , j ) , starting from the initial configuration. 3/16

  5. Count histories - Example � 0 � 2 Take the urn with ( a 0 , b 0 ) = ( 1 , 1 ) . 1 1 1 5 1 H ( x , y , z ) = 2 3 4 xy 1 1 2 2 4 2 3 3 4/16

  6. Count histories - Example � 0 � 2 Take the urn with ( a 0 , b 0 ) = ( 1 , 1 ) . 1 1 1 5 1 H ( x , y , z ) = 2 3 xy 4 1 ( xy 3 + x 2 y 2 ) z + 1 2 1 ! 2 4 2 3 3 4/16

  7. Count histories - Example � 0 � 2 Take the urn with ( a 0 , b 0 ) = ( 1 , 1 ) . 1 1 1 H ( x , y , z ) = 5 1 2 xy 3 4 1 ( xy 3 + x 2 y 2 ) z + 1 ! 1 2 2 4 2 3 3 4/16

  8. Count histories - Example � 0 � 2 Take the urn with ( a 0 , b 0 ) = ( 1 , 1 ) . 1 1 1 H ( x , y , z ) = 5 1 xy 2 3 ( xy 3 + x 2 y 2 ) z 4 1 + 1 ! 1 2 ( xy 5 + 5 x 2 y 4 + 2 x 3 y 3 ) z 2 2 4 + 2 ! 2 3 3 4/16

  9. Count histories - Example � 0 � 2 Take the urn with ( a 0 , b 0 ) = ( 1 , 1 ) . 1 1 1 H ( x , y , z ) = 5 1 xy 2 3 ( xy 3 + x 2 y 2 ) z 4 1 + 1 ! 1 2 ( xy 5 + 5 x 2 y 4 + 2 x 3 y 3 ) z 2 2 4 + 2 ! 2 3 + . . . 3 4/16

  10. Combinatorics and Analytic properties � a � b of balance σ with ( a 0 , b 0 ) c d s n : total number of balls in the urn after n draws Histories of length n = s 0 s 1 . . . s n − 1 = s 0 ( s 0 + σ ) . . . ( s 0 + ( n − 1 ) σ ) Combinatorics = Probability A n : number of black balls after n draws B n : number of white balls after n draws � x i y j z n � H n , i , j H ( x , y , z ) P { A n = i , B n = j } = = s 0 s 1 . . . s n − 1 [ z n ] H ( 1 , 1 , z ) Partial Differential Equation [FGP05] ∂ z H = x a + 1 y b ∂ x H + x c y d + 1 ∂ y H 5/16

  11. Symbolic ingredients for PDE - Balanced case Pick and replace is the symbolic pointing operator Θ x = x ∂ x ? → i x i + a y j + b + j x i + c y j + d x i y j − 6/16

  12. Symbolic ingredients for PDE - Balanced case Pick and replace is the symbolic pointing operator Θ x = x ∂ x x i y j D → i x i + a y j + b + j x i + c y j + d − D = x a y b Θ x + x c y d Θ y 6/16

  13. Count histories - Example � � 0 2 Take the urn with ( a 0 , b 0 ) = ( 1 , 1 ) . 1 1 1 H ( x , y , z ) = 5 1 xy 2 3 ( xy 3 + x 2 y 2 ) z 4 1 + 1 ! 1 2 ( xy 5 + 5 x 2 y 4 + 2 x 3 y 3 ) z 2 + 2 4 2 ! 2 3 + . . . 3 6/16

  14. Symbolic ingredients for PDE - Balanced case Pick and replace is the symbolic pointing operator Θ x = x ∂ x x i y j D → i x i + a y j + b + j x i + c y j + d − D = x a y b Θ x + x c y d Θ y Iteration from the initial configuration, � D n � x a 0 y b 0 � H n , i , j x i y j = i , j D n [ x a 0 y b 0 ] z n � e D z � ◦ [ x a 0 y b 0 ] � H ( x , y , z ) = n ! = n ≥ 0 PDE proof Differentiate w.r.t. z : ∂ z H = D H 6/16

  15. (Un)-balanced Pólya urns [M., PhD thesis, 2013] 7/16

  16. No more histories... x 3 → 3 � − 1 � 1 starting in ( 3 , 0 ) 0 1 3 x 2 y → 3 No more : 2 1 ❆ balance xy 2 x 2 y 2 → 3 → 4 ❆ determinist total number of balls 1 2 2 2 ❆ equiprobability of y 3 xy 3 xy 3 x 2 y 3 histories 6 12 6 6 1 1 1 1 1 1 1 1 1 1 1 1 Count histories � = Prob. 3 3 3 3 3 3 3 3 4 3 3 4 7/16

  17. Back to probability and symbolic I � P { A n = i , B n = j } x i y j p n ( x , y ) = i , j ? i j i + j x i + a y j + b + x i y j i + j x i + c y j + d − → 8/16

  18. Back to probability and symbolic I � P { A n = i , B n = j } x i y j t i + j p n ( x , y , t ) = i , j x i y j t i + j ? i j i + j x i + a y j + b t i + j + a + b + i + j x i + c y j + d t i + j + c + d − → 8/16

  19. Back to probability and symbolic I � P { A n = i , B n = j } x i y j t i + j p n ( x , y , t ) = i , j x i y j t i + j ? i j i + j x i + a y j + b t i + j + a + b + i + j x i + c y j + d t i + j + c + d − → Introduce two operators, integration and differentiation, � t w = x i y j t i + j x i y j w i + j dw I [ x i y j t i + j ] = i + j 0 D = x a y b t a + b Θ x + x c y d t c + d Θ y 8/16

  20. Back to probability and symbolic I � P { A n = i , B n = j } x i y j t i + j p n ( x , y , t ) = i , j i j x i y j t i + j D ◦ I i + j x i + a y j + b t i + j + a + b + i + j x i + c y j + d t i + j + c + d − → Introduce two operators, integration and differentiation, � t w = x i y j t i + j x i y j w i + j dw I [ x i y j t i + j ] = i + j 0 D = x a y b t a + b Θ x + x c y d t c + d Θ y 8/16

  21. Back to probability and symbolic I � P { A n = i , B n = j } x i y j t i + j p n ( x , y , t ) = i , j i j x i y j t i + j D ◦ I i + j x i + a y j + b t i + j + a + b + i + j x i + c y j + d t i + j + c + d − → Introduce two operators, integration and differentiation, � t w = x i y j t i + j x i y j w i + j dw I [ x i y j t i + j ] = i + j 0 D = x a y b t a + b Θ x + x c y d t c + d Θ y p n + 1 = D ◦ I [ p n ] = . . . = ( D ◦ I ) n + 1 [ x a 0 y b 0 t a 0 + b 0 ] –> ugly ! 8/16

  22. Back to probability and symbolic II � P { A n = i , B n = j } x i y j t i + j p n ( x , y , t ) = i , j D = x a y b t a + b Θ x + x c y d t c + d Θ y � t p n + 1 = D ◦ I [ p n ] f ( w ) dw I [ f ( t )] = w 0 9/16

  23. Back to probability and symbolic II � P { A n = i , B n = j } x i y j t i + j p n ( x , y , t ) = i , j D = x a y b t a + b Θ x + x c y d t c + d Θ y � t p n + 1 = D ◦ I [ p n ] f ( w ) dw I [ f ( t )] = w 0 Introduce a new Generating Function, ψ n = I [ p n ] P { A n = i , B n = j } x i y j t i + j � ψ n ( x , y , t ) = i + j i , j p n = t ∂ t ψ n and t ∂ t ψ n + 1 = D ( ψ n ) 9/16

  24. Back to probability and symbolic II � P { A n = i , B n = j } x i y j t i + j p n ( x , y , t ) = i , j D = x a y b t a + b Θ x + x c y d t c + d Θ y � t p n + 1 = D ◦ I [ p n ] f ( w ) dw I [ f ( t )] = w 0 Introduce a new Generating Function, ψ n = I [ p n ] P { A n = i , B n = j } x i y j t i + j � ψ n ( x , y , t ) = i + j i , j p n = t ∂ t ψ n and t ∂ t ψ n + 1 = D ( ψ n ) n ψ n z n verifies Finally t ∂ t = x ∂ x + y ∂ y , thus Ψ = � ( 1 − zx a y b ) Θ x + ( 1 − zx c y d ) Θ y ◦ Ψ( x , y , z ) = x a 0 y b 0 � � for any additive urn ! 9/16

  25. Probabilities and balance case P { A n = i , B n = j } x i y j z n � � (PGF) P ( x , y , z ) = n ≥ 0 i , j P { A n = i , B n = j } x i y j � � i + j z n ( weighted PGF) Ψ( x , y , z ) = i , j n ≥ 0 Link : P ( x , y , z ) = ∂ t Ψ( xt , yt , z ) | t = 1 H n , i , j x i y j z n � � (Histories GF) H ( x , y , z ) = n ! i , j n ≥ 0 Proposition � a b � Let be additive balanced with balance σ > 0 and ( a 0 , b 0 ) the c d starting configuration. With s 0 = a 0 + b 0 , the fonctions Ψ et H are linked by � 1 Ψ( x , y , z ) = 1 � x , y , z 1 − t � t s 0 /σ − 1 H dt σ σ 0 10/16

  26. Solve the PDE = Solve an ODE � ( 1 − zx a y b ) Θ x + ( 1 − zx c y d ) Θ y � ◦ Ψ( x , y , z ) = x a 0 y b 0 (PDE) dx dy dw Characteristic system : x ( 1 − zx a y b ) = y ( 1 − zx c y d ) = x a 0 y b 0 First integral, coming from dy = x ( 1 − zx a y b ) dx (ODE) y ( 1 − zx c y d ) Theorem Let x = g ( y , z , u ) be the general solution of (ODE), with u integration constant, and U ( x , y , z ) (first integral) such that g ( y , z , U ( x , y , z )) = x . Then, � y g ( t , z , U ( x , y , z )) a 0 t b 0 − 1 Ψ( x , y , z ) = 1 − z g ( t , z , U ( x , y , z )) c t d dt 0 11/16

  27. Application I : Knuth cutting loops � − 1 � 1 K = ( a 0 , b 0 ) = ( m , 0 ) 0 1 dx y ( 1 − zy ) = dw dy Characteristic system : x ( 1 − zx − 1 y ) = x m dx x − zy First order differential equation : dy = y ( 1 − zy ) y General solution : g ( y , z , u ) = 1 − zy ( u − z ln ( y )) U ( x , y , z ) = x ( 1 − zy ) First integral : + z ln ( y ) y � 1 t m − 1 ( 1 − zt ) m + 1 ( x ( 1 − z ) − z ln ( t )) m dt Ψ K ( x , 1 , z ) = 0 12/16

  28. Application II : diagonal urns [Balaji–Mahmoud, 2006] � a � 0 BM = a , d > 0 ( a 0 , b 0 ) 0 d dy = x ( 1 − zx a ) dx First order differential equation : y ( 1 − zy d ) � − 1 / a � a / d y − d − z �� General solution : g ( y , z , u ) = + z u a y − d − z � 1 / d � First integral : U ( x , y , z ) = ( x − a − z ) 1 / a � t − d − z � − a 0 / a � y � � a / d t b 0 − 1 ( x − a − z ) Ψ BM ( x , y , z ) = + z 1 − zt d dt y − d − z 0 13/16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend