on topological invariants for algebraic cobordism
play

On topological invariants for algebraic cobordism 27th Nordic - PowerPoint PPT Presentation

On topological invariants for algebraic cobordism 27th Nordic Congress of Mathematicians, Celebrating the 100th anniversary of Institut Mittag-Leffler Gereon Quick NTNU joint work with Michael J. Hopkins Point of departure: Poincar,


  1. Poincaré’ s Existence Theorem: Every normal function 𝜉 arises as the normal function 𝜉 D associated to an algebraic curve D.

  2. Poincaré’ s Existence Theorem: Every normal function 𝜉 arises as the normal function 𝜉 D associated to an algebraic curve D. Then Lefschetz proved:

  3. Poincaré’ s Existence Theorem: Every normal function 𝜉 arises as the normal function 𝜉 D associated to an algebraic curve D. Then Lefschetz proved: • Every normal function 𝜉 defines a class 𝜃 ( 𝜉 ) ∈ H 2 (X;Z) of Hodge type (1,1) such that 𝜃 ( 𝜉 D ) = cl H (D).

  4. Poincaré’ s Existence Theorem: Every normal function 𝜉 arises as the normal function 𝜉 D associated to an algebraic curve D. Then Lefschetz proved: • Every normal function 𝜉 defines a class 𝜃 ( 𝜉 ) ∈ H 2 (X;Z) of Hodge type (1,1) such that 𝜃 ( 𝜉 D ) = cl H (D). • Every class in H 2 (X;Z) of Hodge type (1,1) arises as 𝜃 ( 𝜉 ) for some normal function 𝜉 .

  5. Griffiths: Higher dimensions X a smooth projective complex variety with dimX=n.

  6. Griffiths: Higher dimensions X a smooth projective complex variety with dimX=n. Z ⊂ X a subvariety of codimension p which is the boundary of a differentiable chain Γ .

  7. ⎛ ⎠ ⎞ ⎝ Griffiths: Higher dimensions X a smooth projective complex variety with dimX=n. Z ⊂ X a subvariety of codimension p which is the boundary of a differentiable chain Γ . ⌠ → ω ω Then ∈ F n-p+1 H 2n-2p+1 (X;C) ∨ . | ⌡ Γ

  8. ⎛ ⎠ ⎞ ⎝ Griffiths: Higher dimensions X a smooth projective complex variety with dimX=n. Z ⊂ X a subvariety of codimension p which is the boundary of a differentiable chain Γ . ⌠ → ω ω Then ∈ F n-p+1 H 2n-2p+1 (X;C) ∨ . | ⌡ Γ But the value depends on the choice of Γ .

  9. The intermediate Jacobian of Griffiths and the Abel-Jacobi map:

  10. The intermediate Jacobian of Griffiths and the Abel-Jacobi map: We obtain a well-defined map ⌠ Z for some Γ with Z= ∂ Γ ⟼ ⌡ Γ µ: Z p (X) h → F n-p+1 H 2n-2p+1 (X;C) ∨ /H 2n-2p+1 (X;Z)

  11. The intermediate Jacobian of Griffiths and the Abel-Jacobi map: We obtain a well-defined map ⌠ Z for some Γ with Z= ∂ Γ ⟼ ⌡ Γ µ: Z p (X) h → F n-p+1 H 2n-2p+1 (X;C) ∨ /H 2n-2p+1 (X;Z) ≈ H 2p-1 (X;Z) ⊗ R/Z

  12. The intermediate Jacobian of Griffiths and the Abel-Jacobi map: We obtain a well-defined map ⌠ Z for some Γ with Z= ∂ Γ ⟼ ⌡ Γ µ: Z p (X) h → F n-p+1 H 2n-2p+1 (X;C) ∨ /H 2n-2p+1 (X;Z) ≈ H 2p-1 (X;Z) ⊗ R/Z = J 2p-1 (X)

  13. The intermediate Jacobian of Griffiths and the Abel-Jacobi map: We obtain a well-defined map ⌠ Z for some Γ with Z= ∂ Γ ⟼ ⌡ Γ µ: Z p (X) h → F n-p+1 H 2n-2p+1 (X;C) ∨ /H 2n-2p+1 (X;Z) ≈ H 2p-1 (X;Z) ⊗ R/Z = J 2p-1 (X) J 2p-1 (X) is a complex torus and is called Griffiths’ intermediate Jacobian.

  14. The Jacobian and Griffiths’ theorem:

  15. The Jacobian and Griffiths’ theorem: J 2p-1 (X) is, in general, not an abelian variety.

  16. The Jacobian and Griffiths’ theorem: J 2p-1 (X) is, in general, not an abelian variety. But it varies homomorphically in families.

  17. The Jacobian and Griffiths’ theorem: J 2p-1 (X) is, in general, not an abelian variety. But it varies homomorphically in families. Have an induced a map: Griff p (X):= Z p (X) h /Z p (X) alg → J 2p-1 (X)/J 2p-1 (X) alg

  18. The Jacobian and Griffiths’ theorem: J 2p-1 (X) is, in general, not an abelian variety. But it varies homomorphically in families. Have an induced a map: Griff p (X):= Z p (X) h /Z p (X) alg → J 2p-1 (X)/J 2p-1 (X) alg Griffith’ s theorem: Let X ⊂ P 4 be a general quintic hypersurface. There are lines L and L ’ on X such that µ(L-L ’) is a non torsion element in J 3 (X).

  19. An interesting diagram: Let X be a smooth projective complex variety.

  20. An interesting diagram: Let X be a smooth projective complex variety. Z p (X)

  21. An interesting diagram: Let X be a smooth projective complex variety. Z p (X) Z ⊂ X

  22. An interesting diagram: Let X be a smooth projective complex variety. Z p (X) Z ⊂ X cl H

  23. An interesting diagram: Let X be a smooth projective complex variety. Z p (X) Z ⊂ X cl H Hdg 2p (X)

  24. An interesting diagram: Let X be a smooth projective complex variety. Z p (X) Z ⊂ X − cl H [Z sm ] Hdg 2p (X)

  25. An interesting diagram: Let X be a smooth projective complex variety. Z p (X) h =Kernel of cl H ⊂ Z p (X) Z ⊂ X − cl H [Z sm ] Hdg 2p (X)

  26. An interesting diagram: Let X be a smooth projective complex variety. Z p (X) h =Kernel of cl H ⊂ Z p (X) Z ⊂ X − Abel-Jacobi cl H map µ [Z sm ] Hdg 2p (X)

  27. An interesting diagram: Let X be a smooth projective complex variety. Z p (X) h =Kernel of cl H ⊂ Z p (X) Z ⊂ X − Abel-Jacobi cl H map µ [Z sm ] J 2p-1 (X) Hdg 2p (X)

  28. An interesting diagram: Let X be a smooth projective complex variety. Z p (X) h =Kernel of cl H ⊂ Z p (X) Z ⊂ X − Abel-Jacobi cl H map µ [Z sm ] 2p J 2p-1 (X) → H D (X;Z(p)) → Hdg 2p (X)

  29. An interesting diagram: Let X be a smooth projective complex variety. Z p (X) h =Kernel of cl H ⊂ Z p (X) Z ⊂ X − Abel-Jacobi cl H map µ [Z sm ] 2p J 2p-1 (X) → H D (X;Z(p)) → Hdg 2p (X) Deligne cohomology combines topological with Hodge theoretic information

  30. An interesting diagram: Let X be a smooth projective complex variety. Z p (X) h =Kernel of cl H ⊂ Z p (X) Z ⊂ X − Abel-Jacobi cl H map µ [Z sm ] 2p J 2p-1 (X) → H D (X;Z(p)) → Hdg 2p (X) → 0 Deligne cohomology combines topological with Hodge theoretic information

  31. An interesting diagram: Let X be a smooth projective complex variety. Z p (X) h =Kernel of cl H ⊂ Z p (X) Z ⊂ X − Abel-Jacobi cl H map µ [Z sm ] 2p J 2p-1 (X) → H D (X;Z(p)) → Hdg 2p (X) → 0 0 → Deligne cohomology combines topological with Hodge theoretic information

  32. An interesting diagram: Let X be a smooth projective complex variety. Z p (X) h =Kernel of cl H ⊂ Z p (X) Z ⊂ X − Abel-Jacobi cl HD cl H map µ [Z sm ] 2p J 2p-1 (X) → H D (X;Z(p)) → Hdg 2p (X) → 0 0 → Deligne cohomology combines topological with Hodge theoretic information

  33. Another interesting map for smooth complex varieties:

  34. Another interesting map for smooth complex varieties: Φ : Ω *(X) → MU *(X) 2

  35. Another interesting map for smooth complex varieties: Φ : Ω *(X) → MU *(X) 2 algebraic cobordism of Levine and Morel

  36. Another interesting map for smooth complex varieties: Φ : Ω *(X) → MU *(X) 2 algebraic cobordism complex cobordism of of Levine and Morel the top. space X(C)

  37. Another interesting map for smooth complex varieties: Φ : Ω *(X) → MU *(X) 2 algebraic cobordism complex cobordism of of Levine and Morel the top. space X(C) Ω p (X) is generated by projective maps f:Y → X of codimension p with Y smooth variety modulo Levine’ s and Pandharipande’ s “double point relation”:

  38. Another interesting map for smooth complex varieties: Φ : Ω *(X) → MU *(X) 2 algebraic cobordism complex cobordism of of Levine and Morel the top. space X(C) Ω p (X) is generated by projective maps f:Y → X of codimension p with Y smooth variety modulo Levine’ s and Pandharipande’ s “double point relation”: π -1 (0) ∼ π -1 ( ∞ ) for projective morphisms π : Y’ → XxP 1 such that π -1 (0) is smooth and π -1 ( ∞ )=A ∪ D B w here A and B are smooth and meet transversally in D.

  39. What can we say about the map Φ ? Φ MU 2 *(X) Ω *(X)

  40. What can we say about the map Φ ? [Y → X] Φ MU 2 *(X) Ω *(X)

  41. What can we say about the map Φ ? [Y → X] [Y(C) → X(C)] ⟼ Φ MU 2 *(X) Ω *(X)

  42. What can we say about the map Φ ? [Y → X] [Y(C) → X(C)] ⟼ Φ MU 2 *(X) • The image: Ω *(X)

  43. What can we say about the map Φ ? [Y → X] [Y(C) → X(C)] ⟼ Φ MU 2 *(X) • The image: Ω *(X) Z*(X)/ rat.eq = CH*(X)

  44. What can we say about the map Φ ? [Y → X] [Y(C) → X(C)] ⟼ Φ MU 2 *(X) • The image: Ω *(X) Z*(X)/ rat.eq = CH*(X) Hdg 2 *(X) ⊆ H 2 *(X;Z) cl H

  45. What can we say about the map Φ ? [Y → X] [Y(C) → X(C)] ⟼ Φ MU 2 *(X) • The image: Ω *(X) Z*(X)/ rat.eq = CH*(X) Hdg 2 *(X) ⊆ H 2 *(X;Z) cl H

  46. What can we say about the map Φ ? [Y → X] [Y(C) → X(C)] ⟼ Φ MU 2 *(X) • The image: Ω *(X) Z*(X)/ rat.eq = CH*(X) Hdg 2 *(X) ⊆ H 2 *(X;Z) cl H

  47. What can we say about the map Φ ? [Y → X] [Y(C) → X(C)] ⟼ Φ MU 2 *(X) • The image: Ω *(X) Z*(X)/ rat.eq = CH*(X) Hdg 2 *(X) ⊆ H 2 *(X;Z) cl H There is a “Hodge-theoretic” restriction for Im Φ .

  48. What can we say about the map Φ ? [Y → X] [Y(C) → X(C)] ⟼ Φ MU 2 *(X) • The image: Ω *(X) Z*(X)/ rat.eq = CH*(X) Hdg 2 *(X) ⊆ H 2 *(X;Z) cl H There is a “Hodge-theoretic” restriction for Im Φ . • The kernel:

  49. What can we say about the map Φ ? [Y → X] [Y(C) → X(C)] ⟼ Φ MU 2 *(X) • The image: Ω *(X) Z*(X)/ rat.eq = CH*(X) Hdg 2 *(X) ⊆ H 2 *(X;Z) cl H There is a “Hodge-theoretic” restriction for Im Φ . • The kernel: Griffiths’ theorem suggests that Φ is not injective.

  50. What can we say about the map Φ ? [Y → X] [Y(C) → X(C)] ⟼ Φ MU 2 *(X) • The image: Ω *(X) Z*(X)/ rat.eq = CH*(X) Hdg 2 *(X) ⊆ H 2 *(X;Z) cl H There is a “Hodge-theoretic” restriction for Im Φ . • The kernel: Griffiths’ theorem suggests that Φ is not injective. Question: Is there is an “Abel-Jacobi-invariant” which is able to detect elements in Ker Φ ?

  51. The image: Φ MU 2 *(X) Ω *(X)

  52. The image: Hdg MU2 *(X) ∩ Φ MU 2 *(X) Ω *(X)

  53. not surjective, but … The image: Hdg MU2 *(X) ∩ Φ MU 2 *(X) Ω *(X)

  54. not surjective, but … The image: Hdg MU2 *(X) ∩ Φ MU 2 *(X) Ω *(X) Ω *(X) ⊗ L* Z MU 2 *(X) ⊗ L* Z

  55. not surjective, but … The image: Hdg MU2 *(X) ∩ Φ MU 2 *(X) Ω *(X) Ω *(X) ⊗ L* Z MU 2 *(X) ⊗ L* Z CH*(X)

  56. not surjective, but … The image: Hdg MU2 *(X) ∩ Φ MU 2 *(X) Ω *(X) Ω *(X) ⊗ L* Z MU 2 *(X) ⊗ L* Z CH*(X) Hdg 2 *(X) ⊆ H 2 *(X;Z) cl H

  57. not surjective, but … The image: Hdg MU2 *(X) ∩ Φ MU 2 *(X) Ω *(X) Ω *(X) ⊗ L* Z MU 2 *(X) ⊗ L* Z CH*(X) Hdg 2 *(X) ⊆ H 2 *(X;Z) cl H

  58. not surjective, but … The image: Hdg MU2 *(X) ∩ Φ MU 2 *(X) Ω *(X) Ω *(X) ⊗ L* Z MU 2 *(X) ⊗ L* Z CH*(X) Hdg 2 *(X) ⊆ H 2 *(X;Z) cl H

  59. not surjective, but … The image: Hdg MU2 *(X) ∩ Φ MU 2 *(X) Ω *(X) Ω *(X) ⊗ L* Z MU 2 *(X) ⊗ L* Z Totaro CH*(X) Hdg 2 *(X) ⊆ H 2 *(X;Z) cl H

  60. not surjective, but … The image: Hdg MU2 *(X) ∩ Φ MU 2 *(X) Ω *(X) Ω *(X) ⊗ L* Z MU 2 *(X) ⊗ L* Z Totaro Levine-Morel ≈ CH*(X) Hdg 2 *(X) ⊆ H 2 *(X;Z) cl H

  61. not surjective, but … The image: Hdg MU2 *(X) ∩ Φ MU 2 *(X) Ω *(X) Ω *(X) ⊗ L* Z MU 2 *(X) ⊗ L* Z ≉ in general Totaro Levine-Morel ≈ CH*(X) Hdg 2 *(X) ⊆ H 2 *(X;Z) cl H

  62. not surjective, but … The image: Hdg MU2 *(X) ∩ Φ MU 2 *(X) Ω *(X) Ω *(X) ⊗ L* Z MU 2 *(X) ⊗ L* Z ≉ in general Totaro Levine-Morel ≈ CH*(X) Hdg 2 *(X) ⊆ H 2 *(X;Z) cl H Atiyah-Hirzebruch: cl H is not surjective.

  63. not surjective, but … The image: Hdg MU2 *(X) ∩ Φ MU 2 *(X) Ω *(X) Ω *(X) ⊗ L* Z MU 2 *(X) ⊗ L* Z ≉ in general Totaro Levine-Morel ≈ CH*(X) Hdg 2 *(X) ⊆ H 2 *(X;Z) cl H Atiyah-Hirzebruch: cl H is not surjective. This argument does not work for Φ .

  64. Kollar’ s examples: (see also Soulé-Voisin et. al.)

  65. Kollar’ s examples: (see also Soulé-Voisin et. al.) Let X ⊂ P 4 a very general hypersurface of degree d=p 3 for a prime p ≥ 5.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend