on the van est homomorphism for lie groupoids
play

On the Van Est homomorphism for Lie groupoids Eckhard Meinrenken - PowerPoint PPT Presentation

On the Van Est homomorphism for Lie groupoids Eckhard Meinrenken (based on joint work with David Li-Bland) Fields Institute, December 13, 2013 Eckhard Meinrenken (based on joint work with David Li-Bland) On the Van Est homomorphism for Lie


  1. On the Van Est homomorphism for Lie groupoids Eckhard Meinrenken (based on joint work with David Li-Bland) Fields Institute, December 13, 2013 Eckhard Meinrenken (based on joint work with David Li-Bland) On the Van Est homomorphism for Lie groupoids

  2. Overview Let G ⇒ M be a Lie groupoid, with Lie algebroid A = Lie( G ) Weinstein-Xu (1991) constructed a cochain map VE: C • ( G ) → C • ( A ) from smooth groupoid cochains to the Chevalley-Eilenberg complex of the Lie algebroid A of G . Eckhard Meinrenken (based on joint work with David Li-Bland) On the Van Est homomorphism for Lie groupoids

  3. Overview Let G ⇒ M be a Lie groupoid, with Lie algebroid A = Lie( G ) Weinstein-Xu (1991) constructed a cochain map VE: C • ( G ) → C • ( A ) from smooth groupoid cochains to the Chevalley-Eilenberg complex of the Lie algebroid A of G . Crainic (2003) proved a Van Est Theorem for this map. Eckhard Meinrenken (based on joint work with David Li-Bland) On the Van Est homomorphism for Lie groupoids

  4. Overview Let G ⇒ M be a Lie groupoid, with Lie algebroid A = Lie( G ) Weinstein-Xu (1991) constructed a cochain map VE: C • ( G ) → C • ( A ) from smooth groupoid cochains to the Chevalley-Eilenberg complex of the Lie algebroid A of G . Crainic (2003) proved a Van Est Theorem for this map. Weinstein, Mehta (2006), and Abad-Crainic (2008, 2011) generalized to VE: W • , • ( G ) → W • , • ( A ) for suitably defined Weil algebras . Eckhard Meinrenken (based on joint work with David Li-Bland) On the Van Est homomorphism for Lie groupoids

  5. Overview Applications Foliation theory Integration of (quasi-)Poisson manifolds and Dirac structures Multiplicative forms on groupoids (Mackenzie-Xu, Bursztyn-Cabrera-Ortiz) Index theory (Posthuma-Pflaum-Tang) Lie pseudogroups and Spencer operators (Crainic-Salazar-Struchiner), · · · Eckhard Meinrenken (based on joint work with David Li-Bland) On the Van Est homomorphism for Lie groupoids

  6. Overview Applications Foliation theory Integration of (quasi-)Poisson manifolds and Dirac structures Multiplicative forms on groupoids (Mackenzie-Xu, Bursztyn-Cabrera-Ortiz) Index theory (Posthuma-Pflaum-Tang) Lie pseudogroups and Spencer operators (Crainic-Salazar-Struchiner), · · · Using the Fundamental Lemma of homological perturbation theory, we’ll give a simple construction of VE (and its properties). Eckhard Meinrenken (based on joint work with David Li-Bland) On the Van Est homomorphism for Lie groupoids

  7. Lie groupoid cohomology Let G ⇒ M be a Lie groupoid over M ⊆ G . g m 0 ← − m 1 . Multiplication ( g 1 , g 2 ) �→ g 1 g 2 defined for composable arrows : � � � � g 1 g 2 g 1 g 2 m 0 ← − m 1 ← − m 2 �→ m 0 ← − − m 2 . Eckhard Meinrenken (based on joint work with David Li-Bland) On the Van Est homomorphism for Lie groupoids

  8. Lie groupoid cohomology Let G ⇒ M be a Lie groupoid over M ⊆ G . g m 0 ← − m 1 . Multiplication ( g 1 , g 2 ) �→ g 1 g 2 defined for composable arrows : � � � � g 1 g 2 g 1 g 2 m 0 ← − m 1 ← − m 2 �→ m 0 ← − − m 2 . Examples Lie group G ⇒ pt Pair groupoid Pair( M ) = M × M ⇒ M Fundamental groupoid Π( M ) ⇒ M Foliation groupoid(s), e.g., Π F ( M ) ⇒ M Gauge groupoids of principal bundles Action groupoids K ⋉ M ⇒ M Groupoids associated with hypersurfaces Eckhard Meinrenken (based on joint work with David Li-Bland) On the Van Est homomorphism for Lie groupoids

  9. Lie groupoid cohomology Let B p G be the manifold of p -arrows ( g 1 , . . . , g p ): g p g 1 g 2 m 0 ← − m 1 ← − m 2 · · · ← − m p It is a simplicial manifold, with face maps ∂ i : B p G → B p − 1 G , i = 0 , . . . , p removing m i and degeneracies ǫ i : B p G → B p +1 G repeating m i . For example � � � � g p g p g 1 g 2 g 1 g 2 m 0 − m 1 − m 2 · · · − m p = m 0 − m 2 · · · − m p ∂ 1 ← ← ← ← − ← . Eckhard Meinrenken (based on joint work with David Li-Bland) On the Van Est homomorphism for Lie groupoids

  10. Lie groupoid cohomology Groupoid cochain complex: C • ( G ) := C ∞ ( B • G ) with differential p +1 � ( − 1) i ∂ ∗ i : C ∞ ( B p G ) → C ∞ ( B p +1 G ) δ = i =0 and algebra structure C p ( G ) ⊗ C p ′ ( G ) → C p + p ′ ( G ), f ∪ f ′ = pr ∗ f (pr ′ ) ∗ f ′ , where pr , pr ′ are the ‘front face’ and ‘back face’ projections. Eckhard Meinrenken (based on joint work with David Li-Bland) On the Van Est homomorphism for Lie groupoids

  11. Lie groupoid cohomology Groupoid cochain complex: C • ( G ) := C ∞ ( B • G ) with differential p +1 � ( − 1) i ∂ ∗ i : C ∞ ( B p G ) → C ∞ ( B p +1 G ) δ = i =0 and algebra structure C p ( G ) ⊗ C p ′ ( G ) → C p + p ′ ( G ), f ∪ f ′ = pr ∗ f (pr ′ ) ∗ f ′ , where pr , pr ′ are the ‘front face’ and ‘back face’ projections. Variations: Normalized subcomplex � C • ( G ): kernel of degeneracy maps ǫ i . More generally, with coefficients in G -modules S → M . C • ( G ) M := C ∞ ( B • G ) M , the germs along M ⊆ B p G . Extends to double complex W • , • ( G ) := Ω • ( B • G ). Eckhard Meinrenken (based on joint work with David Li-Bland) On the Van Est homomorphism for Lie groupoids

  12. Lie groupoid cohomology Example (Alexander-Spanier complex) C • (Pair( M )) M = C ∞ ( M p +1 ) M p +1 � ( − 1) i f ( m 0 , . . . , � ( δ f )( m 0 , . . . , m p +1 ) = m i , . . . , m p +1 ) i =0 Eckhard Meinrenken (based on joint work with David Li-Bland) On the Van Est homomorphism for Lie groupoids

  13. Lie algebroid cohomology Let A → M be a Lie algebroid, with anchor a: A → TM and bracket [ · , · ] A on Γ( A ). Thus [ X , fY ] = f [ X , Y ] + (a( X ) f ) Y . Eckhard Meinrenken (based on joint work with David Li-Bland) On the Van Est homomorphism for Lie groupoids

  14. Lie algebroid cohomology Let A → M be a Lie algebroid, with anchor a: A → TM and bracket [ · , · ] A on Γ( A ). Thus [ X , fY ] = f [ X , Y ] + (a( X ) f ) Y . Examples Lie algebra g Tangent bundle TM Tangent bundle to foliation T F M ⊂ TM Atiyah algebroid of principal bundle Cotangent Lie algebroid of Poisson manifold Action Lie algebroids k ⋉ M Lie algebroids associated with hypersurfaces ... Eckhard Meinrenken (based on joint work with David Li-Bland) On the Van Est homomorphism for Lie groupoids

  15. Lie algebroid cohomology The Chevalley-Eilenberg complex is C • ( A ) = Γ( ∧ • A ∗ ) with differential ( d CE φ )( X 0 , . . . , X p ) p � ( − 1) i a( X i ) φ ( X 0 , . . . , � = X i , . . . , X p ) i =0 � ( − 1) i + j φ ([ X i , X j ] , X 0 , . . . , � X i , . . . , � + X j , . . . , X p ) i < j and with product the wedge product. Eckhard Meinrenken (based on joint work with David Li-Bland) On the Van Est homomorphism for Lie groupoids

  16. Lie algebroid cohomology The Chevalley-Eilenberg complex is C • ( A ) = Γ( ∧ • A ∗ ) with differential ( d CE φ )( X 0 , . . . , X p ) p � ( − 1) i a( X i ) φ ( X 0 , . . . , � = X i , . . . , X p ) i =0 � ( − 1) i + j φ ([ X i , X j ] , X 0 , . . . , � X i , . . . , � + X j , . . . , X p ) i < j and with product the wedge product. More generally, with coefficients in A -modules S → M . Extends to double complex W • , • ( A ) For A = T F M , get foliated de Rham complex Ω F ( M ). Eckhard Meinrenken (based on joint work with David Li-Bland) On the Van Est homomorphism for Lie groupoids

  17. From Lie groupoids to Lie algebroids A Lie groupoid G ⇒ M has an associated Lie algebroid: Lie( G ) = ν ( M , G ) anchor a: Lie( G ) → TM induced from Tt − Ts : TG → TM , [ · , · ] from Γ(Lie( G )) = Lie(Γ( G )) where Γ( G ) is the group of bisections. Eckhard Meinrenken (based on joint work with David Li-Bland) On the Van Est homomorphism for Lie groupoids

  18. From Lie groupoids to Lie algebroids A Lie groupoid G ⇒ M has an associated Lie algebroid: Lie( G ) = ν ( M , G ) anchor a: Lie( G ) → TM induced from Tt − Ts : TG → TM , [ · , · ] from Γ(Lie( G )) = Lie(Γ( G )) where Γ( G ) is the group of bisections. The Van Est map relates the corresponding cochain complexes. Eckhard Meinrenken (based on joint work with David Li-Bland) On the Van Est homomorphism for Lie groupoids

  19. From Lie groupoids to Lie algebroids A Lie groupoid G ⇒ M has an associated Lie algebroid: Lie( G ) = ν ( M , G ) anchor a: Lie( G ) → TM induced from Tt − Ts : TG → TM , [ · , · ] from Γ(Lie( G )) = Lie(Γ( G )) where Γ( G ) is the group of bisections. The Van Est map relates the corresponding cochain complexes. We’ll explain this map using a double complex. Eckhard Meinrenken (based on joint work with David Li-Bland) On the Van Est homomorphism for Lie groupoids

  20. � � � Van Est double complex Define a principal G -bundle � B p G E p G κ p π p M where E p G ⊆ G p +1 consists of elements ( a 0 , . . . , a p ) with common source: m � � � � � �������������� � � � � � � a p a 0 � � � � � � � � a 1 � � � � � � � ... � � � � � � � � � � � � � � � � m 0 m 1 . . . � m p � � Eckhard Meinrenken (based on joint work with David Li-Bland) On the Van Est homomorphism for Lie groupoids

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend