on the duffin schaeffer conjecture
play

On the Duffin-Schaeffer conjecture Dimitris Koukoulopoulos 1 joint - PowerPoint PPT Presentation

On the Duffin-Schaeffer conjecture Dimitris Koukoulopoulos 1 joint work with James Maynard 2 1 Universit de Montral 2 University of Oxford Second Symposium in Analytic Number Theory Cetraro, Italy 10 July 2019 The problem Given : N [


  1. On the Duffin-Schaeffer conjecture Dimitris Koukoulopoulos 1 joint work with James Maynard 2 1 Université de Montréal 2 University of Oxford Second Symposium in Analytic Number Theory Cetraro, Italy 10 July 2019

  2. The problem Given ψ : N → [ 0 , + ∞ ) and α ∈ [ 0 , 1 ] , solve the inequality � � α − a � � � ψ ( q ) � � with a ∈ Z , q ∈ N ( ∗ ) � � q q

  3. The problem Given ψ : N → [ 0 , + ∞ ) and α ∈ [ 0 , 1 ] , solve the inequality � � α − a � � � ψ ( q ) � � with a ∈ Z , q ∈ N ( ∗ ) � � q q (possibly imposing the coprimality condition gcd ( a , q ) = 1)

  4. The problem Given ψ : N → [ 0 , + ∞ ) and α ∈ [ 0 , 1 ] , solve the inequality � � α − a � � � ψ ( q ) � � with a ∈ Z , q ∈ N ( ∗ ) � � q q (possibly imposing the coprimality condition gcd ( a , q ) = 1) Dirichlet: when ψ ( q ) = 1 / q , then ( ∗ ) has infinitely many solutions for all α ∈ [ 0 , 1 ] .

  5. The problem Given ψ : N → [ 0 , + ∞ ) and α ∈ [ 0 , 1 ] , solve the inequality � � α − a � � � ψ ( q ) � � with a ∈ Z , q ∈ N ( ∗ ) � � q q (possibly imposing the coprimality condition gcd ( a , q ) = 1) Dirichlet: when ψ ( q ) = 1 / q , then ( ∗ ) has infinitely many solutions for all α ∈ [ 0 , 1 ] . Question: can we solve ( ∗ ) if ψ is more irregular?

  6. The problem Given ψ : N → [ 0 , + ∞ ) and α ∈ [ 0 , 1 ] , solve the inequality � α − a � � � � ψ ( q ) � � with a ∈ Z , q ∈ N ( ∗ ) � � q q (possibly imposing the coprimality condition gcd ( a , q ) = 1) Dirichlet: when ψ ( q ) = 1 / q , then ( ∗ ) has infinitely many solutions for all α ∈ [ 0 , 1 ] . Question: can we solve ( ∗ ) if ψ is more irregular? Caveat: There might be exceptional α ’s.

  7. The problem Given ψ : N → [ 0 , + ∞ ) and α ∈ [ 0 , 1 ] , solve the inequality � α − a � � � � ψ ( q ) � � with a ∈ Z , q ∈ N ( ∗ ) � � q q (possibly imposing the coprimality condition gcd ( a , q ) = 1) Dirichlet: when ψ ( q ) = 1 / q , then ( ∗ ) has infinitely many solutions for all α ∈ [ 0 , 1 ] . Question: can we solve ( ∗ ) if ψ is more irregular? Caveat: There might be exceptional α ’s. Goal: understand when set of exceptional α ’s has null measure

  8. Khinchin’s theorem � a q − ψ ( q ) , a q + ψ ( q ) � � K q := q q 0 � a � q

  9. Khinchin’s theorem � a q − ψ ( q ) , a q + ψ ( q ) � � K q := q q 0 � a � q K := lim sup K q q →∞

  10. Khinchin’s theorem � a q − ψ ( q ) , a q + ψ ( q ) � � K q := q q 0 � a � q K := lim sup K q q →∞ = { α ∈ [ 0 , 1 ] : α ∈ K q for infinitely many q }

  11. Khinchin’s theorem � a q − ψ ( q ) , a q + ψ ( q ) � � K q := q q 0 � a � q K := lim sup K q q →∞ = { α ∈ [ 0 , 1 ] : α ∈ K q for infinitely many q } Note that λ ( K q ) ≍ ψ ( q ) ( λ = Lebesgue measure )

  12. Khinchin’s theorem � a q − ψ ( q ) , a q + ψ ( q ) � � K q := q q 0 � a � q K := lim sup K q q →∞ = { α ∈ [ 0 , 1 ] : α ∈ K q for infinitely many q } Note that λ ( K q ) ≍ ψ ( q ) ( λ = Lebesgue measure ) � • ‘easy’ direction of Borel-Cantelli : ψ ( q ) < ∞ ⇒ λ ( K ) = 0 . q

  13. Khinchin’s theorem � a q − ψ ( q ) , a q + ψ ( q ) � � K q := q q 0 � a � q K := lim sup K q q →∞ = { α ∈ [ 0 , 1 ] : α ∈ K q for infinitely many q } Note that λ ( K q ) ≍ ψ ( q ) ( λ = Lebesgue measure ) � • ‘easy’ direction of Borel-Cantelli : ψ ( q ) < ∞ ⇒ λ ( K ) = 0 . q • Khinchin (1924) proved a partial converse: � q ψ ( q ) ց & ψ ( q ) = ∞ ⇒ λ ( K ) = 1 . q

  14. The Duffin-Schaeffer conjecture Study coprime solutions to | α − a / q | � ψ ( q ) / q to avoid over-counting:

  15. The Duffin-Schaeffer conjecture Study coprime solutions to | α − a / q | � ψ ( q ) / q to avoid over-counting: � a q − ψ ( q ) , a q + ψ ( q ) � � A q := , A = lim sup A q q q q →∞ 1 � a � q gcd ( a , q )= 1

  16. The Duffin-Schaeffer conjecture Study coprime solutions to | α − a / q | � ψ ( q ) / q to avoid over-counting: � a q − ψ ( q ) , a q + ψ ( q ) � � A q := , A = lim sup A q q q q →∞ 1 � a � q gcd ( a , q )= 1 • Here λ ( A q ) = ψ ( q ) ϕ ( q ) / q , so the ‘easy’ Borel-Cantelli lemma yields: ψ ( q ) ϕ ( q ) � < ∞ ⇒ λ ( A ) = 0 q q

  17. The Duffin-Schaeffer conjecture Study coprime solutions to | α − a / q | � ψ ( q ) / q to avoid over-counting: � a q − ψ ( q ) , a q + ψ ( q ) � � A q := , A = lim sup A q q q q →∞ 1 � a � q gcd ( a , q )= 1 • Here λ ( A q ) = ψ ( q ) ϕ ( q ) / q , so the ‘easy’ Borel-Cantelli lemma yields: ψ ( q ) ϕ ( q ) � < ∞ ⇒ λ ( A ) = 0 q q • Duffin and Schaeffer (1941) conjecture a strong converse is also true: ψ ( q ) ϕ ( q ) � = ∞ ⇒ λ ( A ) = 1 . q q

  18. Results on DSC (Duffin-Schaeffer Conjecture)

  19. Results on DSC (Duffin-Schaeffer Conjecture) • Duffin-Schaeffer (1941): DSC is true when ψ is ‘regular’, i.e. when � q � Q ψ ( q ) ϕ ( q ) / q lim sup > 0 . � q � Q ψ ( q ) Q →∞

  20. Results on DSC (Duffin-Schaeffer Conjecture) • Duffin-Schaeffer (1941): DSC is true when ψ is ‘regular’, i.e. when � q � Q ψ ( q ) ϕ ( q ) / q lim sup > 0 . � q � Q ψ ( q ) Q →∞ • Erd˝ os (1970) & Vaaler (1978) : DSC is true when ψ ( q ) = O ( 1 / q ) .

  21. Results on DSC (Duffin-Schaeffer Conjecture) • Duffin-Schaeffer (1941): DSC is true when ψ is ‘regular’, i.e. when � q � Q ψ ( q ) ϕ ( q ) / q lim sup > 0 . � q � Q ψ ( q ) Q →∞ • Erd˝ os (1970) & Vaaler (1978) : DSC is true when ψ ( q ) = O ( 1 / q ) . • Pollington-Vaughan (1990) : DSC is true in all dimensions > 1.

  22. Results on DSC (Duffin-Schaeffer Conjecture) • Duffin-Schaeffer (1941): DSC is true when ψ is ‘regular’, i.e. when � q � Q ψ ( q ) ϕ ( q ) / q lim sup > 0 . � q � Q ψ ( q ) Q →∞ • Erd˝ os (1970) & Vaaler (1978) : DSC is true when ψ ( q ) = O ( 1 / q ) . • Pollington-Vaughan (1990) : DSC is true in all dimensions > 1. ψ ( q ) ϕ ( q ) • DSC with ‘extra divergence’, i.e. when � = ∞ : q qL ( q )

  23. Results on DSC (Duffin-Schaeffer Conjecture) • Duffin-Schaeffer (1941): DSC is true when ψ is ‘regular’, i.e. when � q � Q ψ ( q ) ϕ ( q ) / q lim sup > 0 . � q � Q ψ ( q ) Q →∞ • Erd˝ os (1970) & Vaaler (1978) : DSC is true when ψ ( q ) = O ( 1 / q ) . • Pollington-Vaughan (1990) : DSC is true in all dimensions > 1. ψ ( q ) ϕ ( q ) • DSC with ‘extra divergence’, i.e. when � = ∞ : q qL ( q ) Haynes-Pollington-Velani (2012) : L ( q ) = ( q /ψ ( q )) ε .

  24. Results on DSC (Duffin-Schaeffer Conjecture) • Duffin-Schaeffer (1941): DSC is true when ψ is ‘regular’, i.e. when � q � Q ψ ( q ) ϕ ( q ) / q lim sup > 0 . � q � Q ψ ( q ) Q →∞ • Erd˝ os (1970) & Vaaler (1978) : DSC is true when ψ ( q ) = O ( 1 / q ) . • Pollington-Vaughan (1990) : DSC is true in all dimensions > 1. ψ ( q ) ϕ ( q ) • DSC with ‘extra divergence’, i.e. when � = ∞ : q qL ( q ) Haynes-Pollington-Velani (2012) : L ( q ) = ( q /ψ ( q )) ε . Beresnevich-Harman-Haynes-Velani (2013) : L ( q ) = exp { c ( log log q )( log log log q ) } .

  25. Results on DSC (Duffin-Schaeffer Conjecture) • Duffin-Schaeffer (1941): DSC is true when ψ is ‘regular’, i.e. when � q � Q ψ ( q ) ϕ ( q ) / q lim sup > 0 . � q � Q ψ ( q ) Q →∞ • Erd˝ os (1970) & Vaaler (1978) : DSC is true when ψ ( q ) = O ( 1 / q ) . • Pollington-Vaughan (1990) : DSC is true in all dimensions > 1. ψ ( q ) ϕ ( q ) • DSC with ‘extra divergence’, i.e. when � = ∞ : q qL ( q ) Haynes-Pollington-Velani (2012) : L ( q ) = ( q /ψ ( q )) ε . Beresnevich-Harman-Haynes-Velani (2013) : L ( q ) = exp { c ( log log q )( log log log q ) } . Aistleitner-Lachmann-Munsch-Technau-Zafeiropoulos (2018 preprint) : L ( q ) = ( log q ) ε

  26. Results on DSC (Duffin-Schaeffer Conjecture) • Duffin-Schaeffer (1941): DSC is true when ψ is ‘regular’, i.e. when � q � Q ψ ( q ) ϕ ( q ) / q lim sup > 0 . � q � Q ψ ( q ) Q →∞ • Erd˝ os (1970) & Vaaler (1978) : DSC is true when ψ ( q ) = O ( 1 / q ) . • Pollington-Vaughan (1990) : DSC is true in all dimensions > 1. ψ ( q ) ϕ ( q ) • DSC with ‘extra divergence’, i.e. when � = ∞ : q qL ( q ) Haynes-Pollington-Velani (2012) : L ( q ) = ( q /ψ ( q )) ε . Beresnevich-Harman-Haynes-Velani (2013) : L ( q ) = exp { c ( log log q )( log log log q ) } . Aistleitner-Lachmann-Munsch-Technau-Zafeiropoulos (2018 preprint) : L ( q ) = ( log q ) ε Aistleitner (unpublished) : L ( q ) = ( log log q ) ε .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend