on the cost of csi acquisition in large mimo systems
play

On the Cost of CSI Acquisition in Large MIMO Systems Giuseppe - PowerPoint PPT Presentation

On the Cost of CSI Acquisition in Large MIMO Systems Giuseppe Durisi Chalmers, Sweden June, 2013 Joint work with Wei Yang , G unther Koliander , Erwin Riegler , Franz Hlawatsch , Tobias Koch , Yury Polyanskiy Many thanks to Ericsson Research


  1. On the Cost of CSI Acquisition in Large MIMO Systems Giuseppe Durisi Chalmers, Sweden June, 2013 Joint work with Wei Yang , G¨ unther Koliander , Erwin Riegler , Franz Hlawatsch , Tobias Koch , Yury Polyanskiy Many thanks to Ericsson Research Foundation !

  2. CSI acquisition limits large-MIMO gains Pilot symbols TX . . . ? RX TX 2 / 19 G. Durisi

  3. CSI acquisition limits large-MIMO gains Pilot symbols TX . . . ? RX TX Capacity in the absence of a priori channel knowledge is the ultimate limit on the rate of reliable communication 2 / 19 G. Durisi

  4. Outline Beyond the pre-log 1 2 Generic block-fading models 3 From asymptotics to finite-blocklength bounds 3 / 19 G. Durisi

  5. A simple channel model | h n | n L Constant block-memoryless Rayleigh-fading channel 4 / 19 G. Durisi

  6. Coherence time is the bottleneck MIMO input-output relation Y S X W M T × + = M R L 5 / 19 G. Durisi

  7. Coherence time is the bottleneck MIMO input-output relation Y S X W M T × + = M R L No closed-form expression available for C ( ρ ) 5 / 19 G. Durisi

  8. Coherence time is the bottleneck MIMO input-output relation Y S X W M T × + = M R L No closed-form expression available for C ( ρ ) Pre-log [ Zheng & Tse, 2002 ] C ( ρ ) � 1 − M ∗ � log ρ = M ∗ χ = lim L ρ →∞ where M ∗ = min { M T , M R , L/ 2 } 5 / 19 G. Durisi

  9. The underlying geometry: M T = M R = M X Y S = × M R M T L � � 1 − M χ = M L 6 / 19 G. Durisi

  10. The underlying geometry: M T = M R = M Y X S × M R = M T L � � 1 − M χ = M L 6 / 19 G. Durisi

  11. The underlying geometry: M T = M R = M Y X S × M R = M T L � � 1 − M χ = M L 6 / 19 G. Durisi

  12. The underlying geometry: M T = M R = M Y X S × M R = M T L � � 1 − M χ = M L Communications on the Grassmannian manifold 6 / 19 G. Durisi

  13. Geometry suggests a signaling scheme Uniform distribution on the Grassmannian � X = Lρ U U : (truncated) unitary and isotropically distributed Unitary space-time modulation ( USTM ) 7 / 19 G. Durisi

  14. A conjecture Case L ≥ M T + M R (“small MIMO”) [ Zheng & Tse (IT 2002) ]: C ( ρ ) = R USTM ( ρ ) + o (1) 8 / 19 G. Durisi

  15. A conjecture Case L ≥ M T + M R (“small MIMO”) [ Zheng & Tse (IT 2002) ]: C ( ρ ) = R USTM ( ρ ) + o (1) Conjecture for L < M T + M R (“large MIMO”) [ Zheng & Tse (IT 2002) ]: USTM not o (1) -optimal 8 / 19 G. Durisi

  16. BSTM is the optimal distribution [ Yang, Durisi, Riegler (JSAC 2013) ] BSTM is o (1) -optimal when L < M T + M R (large-MIMO) X = DU with U i.d. and unitary D 2 diagonal; contains the eigenvalues of a complex matrix-variate beta distributed matrix 9 / 19 G. Durisi

  17. Why is BSTM optimal? The SIMO case s x Y W × + = M R L Large MIMO ⇒ L < 1 + M R 10 / 19 G. Durisi

  18. Why is BSTM optimal? The SIMO case s x Y W × + = M R L Large MIMO ⇒ L < 1 + M R USTM ⇒ x i.d., � x � 2 = Lρ 10 / 19 G. Durisi

  19. Why is BSTM optimal? The SIMO case s x Y W × + = M R L Large MIMO ⇒ L < 1 + M R USTM ⇒ x i.d., � x � 2 = Lρ ρLM R � x � 2 ∼ Beta ( L − 1 , M R + 1 − L ) L − 1 BSTM ⇒ x i.d., 10 / 19 G. Durisi

  20. Why is BSTM optimal? The SIMO case s x Y W × + = M R L Large MIMO ⇒ L < 1 + M R USTM ⇒ x i.d., � x � 2 = Lρ ρLM R � x � 2 ∼ Beta ( L − 1 , M R + 1 − L ) L − 1 BSTM ⇒ x i.d., I ( x ; Y ) = h ( Y ) − h ( Y | x ) 10 / 19 G. Durisi

  21. Why is BSTM optimal? The SIMO case s x Y W × + = M R L Large MIMO ⇒ L < 1 + M R USTM ⇒ x i.d., � x � 2 = Lρ ρLM R � x � 2 ∼ Beta ( L − 1 , M R + 1 − L ) L − 1 BSTM ⇒ x i.d., I ( x ; Y ) = h ( Y ) − h ( Y | x ) ≈ h ( s � x � ) + 2( L − 1 − M R ) E [log � x � ] + const 10 / 19 G. Durisi

  22. Outline Beyond the pre-log 1 2 Generic block-fading models 3 From asymptotics to finite-blocklength bounds 11 / 19 G. Durisi

  23. The “generic” block-fading model Constant block-fading model for subchannel ( r, t ) h r,t = 1 L · s r,t , s r,t ∼ CN (0 , 1) 12 / 19 G. Durisi

  24. The “generic” block-fading model Constant block-fading model for subchannel ( r, t ) h r,t = 1 L · s r,t , s r,t ∼ CN (0 , 1) A more accurate model for MIMO CP-OFDM systems h r,t = z r,t · s r,t , s r,t ∼ CN (0 , 1) z r,t ∈ C L ⇒ Fourier transf. of power-delay profile 12 / 19 G. Durisi

  25. The “generic” block-fading model Constant block-fading model for subchannel ( r, t ) h r,t = 1 L · s r,t , s r,t ∼ CN (0 , 1) A more accurate model for MIMO CP-OFDM systems h r,t = z r,t · s r,t , s r,t ∼ CN (0 , 1) z r,t ∈ C L ⇒ Fourier transf. of power-delay profile We assume that { z r,t } are generic 12 / 19 G. Durisi

  26. Generic { z r,t } yield larger pre-log [ Riegler, Koliander, Durisi, Hlawatsch (ISIT 2013) ] { z r,t } generic and M R > M T ( L − 1) with M T < L/ 2 L − T 13 / 19 G. Durisi

  27. Generic { z r,t } yield larger pre-log [ Riegler, Koliander, Durisi, Hlawatsch (ISIT 2013) ] { z r,t } generic and M R > M T ( L − 1) with M T < L/ 2 L − T Then � � 1 − 1 χ gen = M T L 13 / 19 G. Durisi

  28. Generic { z r,t } yield larger pre-log [ Riegler, Koliander, Durisi, Hlawatsch (ISIT 2013) ] { z r,t } generic and M R > M T ( L − 1) with M T < L/ 2 L − T Then � � 1 − 1 χ gen = M T L Compare with constant block-fading model � 1 − M T � χ const = M T L 13 / 19 G. Durisi

  29. Intuition behind pre-log increase: M R = 3 , M T = 2 , L = 4 � � 1 − M T Constant block-fading: χ const = M T = 1 L Y S X = × M T M R L 14 / 19 G. Durisi

  30. Intuition behind pre-log increase: M R = 3 , M T = 2 , L = 4 � � 1 − M T Constant block-fading: χ const = M T = 1 L Y S X = × M T M R L 1 − 1 = 3 � � Generic block-fading: χ gen = M T L 2 diag { z r, 1 } diag { z r, 2 } y r s 1 ,r s 2 ,r x 1 x 2 = + 14 / 19 G. Durisi

  31. Outline Beyond the pre-log 1 2 Generic block-fading models 3 From asymptotics to finite-blocklength bounds 15 / 19 G. Durisi

  32. Lost in “asymptotia”? 16 / 19 G. Durisi

  33. Lost in “asymptotia”? capacity characterizations up to o (1) yield tight bounds � pre-log sensitive to small changes in the channel model � 16 / 19 G. Durisi

  34. From asymptotia to tight bounds [ Yang, Durisi, Koch, Polyanskiy (ITW 2012) ] Capacity bounds / Capacity with channel knowledge 1 0.95 Upper bound 0.9 0.85 Lower bound 0.8 L = 20 0.75 χ = 1 − 1 0.7 20 = 0 . 95 0.65 0.6 0.55 0.5 0 2 4 6 8 10 12 14 16 18 20 SNR [dB] 17 / 19 G. Durisi

  35. From asymptotia to tight bounds [ Yang, Durisi, Koch, Polyanskiy (ITW 2012) ] 3 2.8 Perfect channel knowledge Upper bound 2.6 Rate [bits/channel use] 2.4 Lower bound 2.2 2 1.8 blocklength = 4 × 10 4 1.6 P { error } ≤ 10 − 3 1.4 SNR = 10 dB 1.2 1 0 1 2 3 4 10 10 10 10 10 Coherence time L 17 / 19 G. Durisi

  36. From asymptotia to tight bounds [ Yang, Durisi, Koch, Polyanskiy (ISIT 2013) ] Outage capacity ( C ǫ ) 1 0.8 Converse Rate, bits/ch. use Normal Approximation 0.6 LTE-Advanced codes Achievability 0.4 0.2 0 0 100 200 300 400 500 600 700 800 900 1000 Blocklength, n 17 / 19 G. Durisi

  37. Zero dispersion AWGN channel [ Polyanskiy, Poor, Verd´ u (IT 2010) ] � V � log n � n Q − 1 ( ǫ ) − O R ∗ awgn ( n, ǫ ) = C awgn − n 18 / 19 G. Durisi

  38. Zero dispersion AWGN channel [ Polyanskiy, Poor, Verd´ u (IT 2010) ] � V � log n � n Q − 1 ( ǫ ) − O R ∗ awgn ( n, ǫ ) = C awgn − n SISO quasi static [ Yang, Durisi, Koch, Polyanskiy (ISIT 2013) ] ❅ � � 1 � log n � � ❅ { R ∗ csirt ( n, ǫ ) , R ∗ no ( n, ǫ ) } = C ǫ − 0 n − O � ❅ n 18 / 19 G. Durisi

  39. Summary Capacity without a-priori CSI Pilot symbols TX . . . ? RX TX 19 / 19 G. Durisi

  40. Summary Capacity without a-priori CSI Too conservative estimates? USTM ⇒ BSTM Pilot symbols M (1 − M/L ) ⇒ M (1 − 1 /L ) TX . . . ? RX TX 19 / 19 G. Durisi

  41. Summary Capacity without a-priori CSI Too conservative estimates? USTM ⇒ BSTM Pilot symbols M (1 − M/L ) ⇒ M (1 − 1 /L ) TX . . . ? RX TX From asymptotia to finite blocklength 3 2.8 Perfect channel knowledge 2.6 Upper bound Rate [bits/channel use] 2.4 Lower bound 2.2 2 1.8 blocklength = 4 × 10 4 1.6 P { error } ≤ 10 − 3 1.4 SNR = 10 dB 1.2 1 0 1 2 3 4 10 10 10 10 10 Coherence time L 19 / 19 G. Durisi

  42. Backup Slides 20 / 19 G. Durisi

  43. Gain of BSTM over USTM for large-MIMO systems 0.14 ρ = 30 dB M T = min { M R , L/ 2 } 0.12 L = 10 0.1 L = 20 0.08 R BSTM − R USTM R USTM 0.06 L = 50 0.04 L = 100 0.02 0 10 20 30 40 50 60 70 80 90 100 M R 21 / 19 G. Durisi

  44. Achievability for finite blocklength 22 / 19 G. Durisi

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend