on the convergence of boolean automata networks without
play

On the convergence of Boolean automata networks without negative - PowerPoint PPT Presentation

On the convergence of Boolean automata networks without negative cycles Tarek Melliti and Damien Regnault e d IBISC - Universit Evry Val dEssonne, France Adrien Richard I3S - Universit e de Nice-Sophia Antipolis, France Sylvain


  1. On the convergence of Boolean automata networks without negative cycles Tarek Melliti and Damien Regnault e d’´ IBISC - Universit´ Evry Val d’Essonne, France Adrien Richard I3S - Universit´ e de Nice-Sophia Antipolis, France Sylvain Sen´ e LIF - Universit´ e d’Aix-Marseille, France Gießen, September 19, 2013 Melliti, Regnault, Richard , Sen´ e Convergence of Boolean networks without negative cycles Automata 2013 1/20

  2. Boolean networks = Finite and heterogeneous CAs on { 0 , 1 } Melliti, Regnault, Richard , Sen´ e Convergence of Boolean networks without negative cycles Automata 2013 2/20

  3. Boolean networks = Finite and heterogeneous CAs on { 0 , 1 } Classical models for Neural networks [McCulloch & Pitts 1943] Gene regulatory networks [Kauffman 1969, Tomas 1973] Melliti, Regnault, Richard , Sen´ e Convergence of Boolean networks without negative cycles Automata 2013 2/20

  4. Focus on interaction graphs 5 6 4 7 3 1 8 9 2 10 11 Melliti, Regnault, Richard , Sen´ e Convergence of Boolean networks without negative cycles Automata 2013 3/20

  5. Focus on interaction graphs 5 6 4 7 3 1 8 9 2 10 11 Question What can be said on the dynamics of a Boolean network according to its interaction graph ? Melliti, Regnault, Richard , Sen´ e Convergence of Boolean networks without negative cycles Automata 2013 3/20

  6. Focus on interaction graphs 5 6 4 7 3 1 8 9 2 10 11 [Arabidopsis Thaliana] Question What can be said on the dynamics of a Boolean network according to its interaction graph ? Application to gene networks : reliable information on the interaction graph only. Melliti, Regnault, Richard , Sen´ e Convergence of Boolean networks without negative cycles Automata 2013 3/20

  7. Definitions Melliti, Regnault, Richard , Sen´ e Convergence of Boolean networks without negative cycles Automata 2013 4/20

  8. Setting There are n components (cells) denoted from 1 to n The set of possible states (configurations) is { 0 , 1 } n The local transition function of component i ∈ [ n ] is any map f i : { 0 , 1 } n → { 0 , 1 } The resulting global transition function is f : { 0 , 1 } n → { 0 , 1 } n , f ( x ) = ( f 1 ( x ) , . . . , f n ( x )) Melliti, Regnault, Richard , Sen´ e Convergence of Boolean networks without negative cycles Automata 2013 5/20

  9. Setting There are n components (cells) denoted from 1 to n The set of possible states (configurations) is { 0 , 1 } n The local transition function of component i ∈ [ n ] is any map f i : { 0 , 1 } n → { 0 , 1 } The resulting global transition function is f : { 0 , 1 } n → { 0 , 1 } n , f ( x ) = ( f 1 ( x ) , . . . , f n ( x )) We consider the fully-asynchronous updating ֒ → very usual in the context of gene networks [Thomas 73] Melliti, Regnault, Richard , Sen´ e Convergence of Boolean networks without negative cycles Automata 2013 5/20

  10. Given a map v : N → [ n ] , the fully-asynchronous dynamics is x t +1 v ( t ) = f v ( t ) ( x t ) , x t +1 = x t ∀ i � = v ( t ) i i Melliti, Regnault, Richard , Sen´ e Convergence of Boolean networks without negative cycles Automata 2013 6/20

  11. Given a map v : N → [ n ] , the fully-asynchronous dynamics is x t +1 v ( t ) = f v ( t ) ( x t ) , x t +1 = x t ∀ i � = v ( t ) i i In practice, non information on v ... → we regroup all the possible asynchronous dynamics under the form of a directed graph Melliti, Regnault, Richard , Sen´ e Convergence of Boolean networks without negative cycles Automata 2013 6/20

  12. Given a map v : N → [ n ] , the fully-asynchronous dynamics is x t +1 v ( t ) = f v ( t ) ( x t ) , x t +1 = x t ∀ i � = v ( t ) i i In practice, non information on v ... → we regroup all the possible asynchronous dynamics under the form of a directed graph Definition The asynchronous state graph of f , denoted by ASG ( f ) , is the directed graph on { 0 , 1 } n with the following set of arcs: x i | x ∈ { 0 , 1 } n , i ∈ [ n ] , x i � = f i ( x ) � � x → ¯ Melliti, Regnault, Richard , Sen´ e Convergence of Boolean networks without negative cycles Automata 2013 6/20

  13. Example x f ( x ) ASG ( f ) 000 100 011 111 001 110 010 100 010 110 011 110 100 010 001 101 101 110 110 010 000 100 111 111 Melliti, Regnault, Richard , Sen´ e Convergence of Boolean networks without negative cycles Automata 2013 7/20

  14. Example x f ( x ) ASG ( f ) 000 100 011 111 001 110 010 100 010 110 011 110 100 010 001 101 101 110 110 010 000 100 111 111 Melliti, Regnault, Richard , Sen´ e Convergence of Boolean networks without negative cycles Automata 2013 7/20

  15. Example x f ( x ) ASG ( f ) 000 100 011 111 001 110 010 100 010 110 011 110 100 010 001 101 101 110 110 010 000 100 111 111 Melliti, Regnault, Richard , Sen´ e Convergence of Boolean networks without negative cycles Automata 2013 7/20

  16. Example x f ( x ) ASG ( f ) 000 100 011 111 001 110 010 100 010 110 011 110 100 010 001 101 101 110 110 010 000 100 111 111 Melliti, Regnault, Richard , Sen´ e Convergence of Boolean networks without negative cycles Automata 2013 7/20

  17. Example x f ( x ) ASG ( f ) 000 100 011 111 001 110 010 100 010 110 011 110 100 010 001 101 101 110 110 010 000 100 111 111 Melliti, Regnault, Richard , Sen´ e Convergence of Boolean networks without negative cycles Automata 2013 7/20

  18. Example x f ( x ) ASG ( f ) 000 100 011 111 001 110 010 100 010 110 011 110 100 010 001 101 101 110 110 010 000 100 111 111 The attractors of ASG ( f ) are its terminal strong components - Attractor of size one = fixed point - Attractor of size at least two = cyclic attractor Melliti, Regnault, Richard , Sen´ e Convergence of Boolean networks without negative cycles Automata 2013 7/20

  19. Example x f ( x ) ASG ( f ) 000 100 011 111 001 110 010 100 010 110 011 110 100 010 001 101 101 110 110 010 000 100 111 111 The attractors of ASG ( f ) are its terminal strong components - Attractor of size one = fixed point - Attractor of size at least two = cyclic attractor A path from a state x to a state y is a direct path if its length ℓ is equal to the Hamming distance between x and y (so ℓ ≤ n ). Melliti, Regnault, Richard , Sen´ e Convergence of Boolean networks without negative cycles Automata 2013 7/20

  20. Definition The interaction graph of f , denoted G ( f ) , is the signed directed graph on { 1 , . . . , n } with the following arcs: - There is a positive arc j → i iff there is a state x such that f i ( x 1 , . . . , x j − 1 , 0 , x j +1 , . . . , x n ) = 0 f i ( x 1 , . . . , x j − 1 , 1 , x j +1 , . . . , x n ) = 1 - There is a negative arc j → i iff there is a state x such that f i ( x 1 , . . . , x j − 1 , 0 , x j +1 , . . . , x n ) = 1 f i ( x 1 , . . . , x j − 1 , 1 , x j +1 , . . . , x n ) = 0 Melliti, Regnault, Richard , Sen´ e Convergence of Boolean networks without negative cycles Automata 2013 8/20

  21. Definition The interaction graph of f , denoted G ( f ) , is the signed directed graph on { 1 , . . . , n } with the following arcs: - There is a positive arc j → i iff there is a state x such that f i ( x 1 , . . . , x j − 1 , 0 , x j +1 , . . . , x n ) = 0 f i ( x 1 , . . . , x j − 1 , 1 , x j +1 , . . . , x n ) = 1 - There is a negative arc j → i iff there is a state x such that f i ( x 1 , . . . , x j − 1 , 0 , x j +1 , . . . , x n ) = 1 f i ( x 1 , . . . , x j − 1 , 1 , x j +1 , . . . , x n ) = 0 j → i ∈ G ( f ) ⇐ ⇒ f i ( x ) depends on x j Melliti, Regnault, Richard , Sen´ e Convergence of Boolean networks without negative cycles Automata 2013 8/20

  22. Example Asynchronous State Graph Interaction Graph f ( x ) x G ( f ) ASG ( f ) 000 100 001 110 011 111 010 100 1 2 011 110 010 110 100 010 101 110 001 101 110 010 3 111 111 000 100 Melliti, Regnault, Richard , Sen´ e Convergence of Boolean networks without negative cycles Automata 2013 9/20

  23. Example Asynchronous State Graph Interaction Graph f ( x ) x G ( f ) ASG ( f ) 000 100 001 110 011 111 010 100 1 2 011 110 010 110 100 010 101 110 001 101 110 010 3 111 111 000 100 Question What can be said on ASG ( f ) according to G ( f ) ? Melliti, Regnault, Richard , Sen´ e Convergence of Boolean networks without negative cycles Automata 2013 9/20

  24. Results Melliti, Regnault, Richard , Sen´ e Convergence of Boolean networks without negative cycles Automata 2013 10/20

  25. Theorem [Robert 1980] If G ( f ) has no cycles then 1. f has a unique fixed point 2. ASG ( f ) has no cycles Melliti, Regnault, Richard , Sen´ e Convergence of Boolean networks without negative cycles Automata 2013 11/20

  26. Theorem [Robert 1980] If G ( f ) has no cycles then 1. f has a unique fixed point 2. ASG ( f ) has no cycles 3. ASG ( f ) has a direct path from every state to the fixed point Melliti, Regnault, Richard , Sen´ e Convergence of Boolean networks without negative cycles Automata 2013 11/20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend