on the communication complexity of sparse set
play

On the communication complexity of sparse set disjointness and - PowerPoint PPT Presentation

On the communication complexity of sparse set disjointness and exists-equal problems Mert Saglam University of Washington Joint work with Gbor Tardos Communication complexity f(X,Y)=? X Y Alice Bob R: Shared random source R


  1. Our bound: R r (DISJ k ) ≤ O(k log (r) k) Run r rounds ➡ If S’=T’= ∅ , declare DISJOINT ➡ Otherwise, declare INTERSECT • p i = 1 /exp (i) (5 log (r) k) Fact 1 • if S ∩ T= ∅ , in r rounds S’=T’= ∅ Fact 2 |message i | ≤ 5k log (r) k / 2 i |message i | ≤ ∏ i/2 p i-2t+ 1 |S| log 1 /p i For i> 3, t= 1 k log exp (i) ≤ k / 2 i ≤ exp (i- 1 ) exp (i-3)

  2. The lower bound

  3. Exists-equal problem • Stronger lower bound: easier problem exists-equal (EE)

  4. Exists-equal problem • Stronger lower bound: easier problem exists-equal (EE) • Let x,y ∈ [t] n

  5. Exists-equal problem • Stronger lower bound: easier problem exists-equal (EE) • Let x,y ∈ [t] n • EE n (x, y) = 1 iff ∃ i, x i =y i t

  6. Exists-equal problem • Stronger lower bound: easier problem exists-equal (EE) • Let x,y ∈ [t] n • EE n (x, y) = 1 iff ∃ i, x i =y i t x: 3 4 4 5 1 y: 2 3 4 2 4

  7. Exists-equal problem • Stronger lower bound: easier problem exists-equal (EE) • Let x,y ∈ [t] n • EE n (x, y) = 1 iff ∃ i, x i =y i t x: 3 4 4 5 1 y: 2 3 4 2 4 So EE(x,y)= 1

  8. Exists-equal problem • EE n is OR of n equality problems over [t]. t • EE n = DISJ n t tn

  9. Exists-equal problem • EE n is OR of n equality problems over [t]. t • EE n = DISJ n t tn 3 4 4 5 1 2 3 4 2 4

  10. Exists-equal problem • EE n is OR of n equality problems over [t]. t • EE n = DISJ n t tn • • • • ● • 3 4 4 5 1 = ● ● ● ● • • • • • 2 3 4 2 4 ● ● ● ● ●

  11. Exists-equal problem • EE n is OR of n equality problems over [t]. t • EE n = DISJ n t tn • • • • ● • 3 4 4 5 1 = ● ● ● ● • • • • • 2 3 4 2 4 ● ● ● ● ●

  12. Exists-equal problem • EE n is OR of n equality problems over [t]. t • EE n = DISJ n t tn • • • • ● • 3 4 4 5 1 = ● ● ● ● • • • • • 2 3 4 2 4 ● ● ● ● ● |S| = |T| = n S, T ⊂ [nt]

  13. The lower bound • Show: any r-round EE protocol communicates Ω (n log (r) n) bits.

  14. The lower bound • Show: any r-round EE protocol communicates Ω (n log (r) n) bits. • EE is OR of n equality problems, so decompose to subproblems

  15. The lower bound • Show: any r-round EE protocol communicates Ω (n log (r) n) bits. • EE is OR of n equality problems, so decompose to subproblems • Show Ω (log (r) n) lower bound per subproblem

  16. The lower bound • Show: any r-round EE protocol communicates Ω (n log (r) n) bits. • EE is OR of n equality problems, so decompose to subproblems • Show Ω (log (r) n) lower bound per subproblem • Equality has O( 1 ) bit communication protocol

  17. The lower bound • Show: any r-round EE protocol communicates Ω (n log (r) n) bits. • EE is OR of n equality problems, so decompose to subproblems • Show Ω (log (r) n) lower bound per subproblem • Equality has O( 1 ) bit communication protocol

  18. The lower bound • Show: any r-round EE protocol communicates Ω (n log (r) n) bits. • EE is OR of n equality problems, so decompose to subproblems • Show Ω (log (r) n) lower bound per subproblem • Equality has O( 1 ) bit communication protocol • We get super-linear increase in complexity!

  19. The lower bound By Yao’s lemma, sufficient to consider deterministic protocols with random input

  20. The lower bound By Yao’s lemma, sufficient to consider deterministic protocols with random input ๏ Set t=4n

  21. The lower bound By Yao’s lemma, sufficient to consider deterministic protocols with random input ๏ Set t=4n ๏ Hard distribution ν : (x,y) ∈ [t] n x [t] n , uniform random

  22. The lower bound By Yao’s lemma, sufficient to consider deterministic protocols with random input ๏ Set t=4n ๏ Hard distribution ν : (x,y) ∈ [t] n x [t] n , uniform random ๏ 3/4 ⩽ Pr (x,y) ~ ν [EE(x,y)=0] = ( 1 - 1 /(4n)) n ⩽ e - 1 /4 < 0.78

  23. The lower bound By Yao’s lemma, sufficient to consider deterministic protocols with random input ๏ Set t=4n ๏ Hard distribution ν : (x,y) ∈ [t] n x [t] n , uniform random ๏ 3/4 ⩽ Pr (x,y) ~ ν [EE(x,y)=0] = ( 1 - 1 /(4n)) n ⩽ e - 1 /4 < 0.78 ๏ ⇒ Any 0-round protocol has 0.22 error

  24. Round elimination Thm: No r-round C = O(n log (r) n)-bits protocol for EE n t Induction on r:

  25. Round elimination Thm: No r-round C = O(n log (r) n)-bits protocol for EE n t Induction on r: r-round C= 𝛇 n log (r) n-bits t protocol for EE n

  26. ⇒ Round elimination Thm: No r-round C = O(n log (r) n)-bits protocol for EE n t Induction on r: r-round C= 𝛇 n log (r) n-bits construct t protocol for EE n

  27. ⇒ Round elimination Thm: No r-round C = O(n log (r) n)-bits protocol for EE n t Induction on r: r-round C= 𝛇 n log (r) n-bits construct t protocol for EE n (r- 1 )-round 1 0C-bits protocol for EE n’ where t’ n’=n/B and t’=t/B B =2 C/n

  28. ⇒ Round elimination Thm: No r-round C = O(n log (r) n)-bits protocol for EE n t Induction on r: r-round C= 𝛇 n log (r) n-bits construct t protocol for EE n (r- 1 )-round 1 0C-bits protocol for EE n’ where t’ n’=n/B and t’=t/B B =2 C/n Observe 1 0C= 𝛑 (n’ log (r- 1 ) n’) Contradicts induction hypothesis!

  29. ⇒ Round elimination Thm: No r-round C = O(n log (r) n)-bits protocol for EE n t Induction on r: r-round C= 𝛇 n log (r) n-bits construct t protocol for EE n (r- 1 )-round 1 0C-bits protocol for EE n’ where t’ n’=n/B and t’=t/B B =2 C/n Observe 1 0C= 𝛑 (n’ log (r- 1 ) n’) Note: Contradicts induction hypothesis! t’=4n’

  30. Fixing the first message x 1 x 2 x 3 x 4 x 5 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ x t n

  31. Fixing the first message x 1 x 2 x 3 x 4 x 5 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ x t n

  32. Fixing the first message x 1 x 2 x 3 • Throw x 0 , Pr y [P(x 0 ,y) ≠ EE(x 0 ,y)] ≥ 2 δ x 4 x 5 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ x t n

  33. Fixing the first message x 1 x 2 x 3 • Throw x 0 , Pr y [P(x 0 ,y) ≠ EE(x 0 ,y)] ≥ 2 δ x 4 x 5 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ x t n

  34. Fixing the first message x 1 x 2 x 3 • Throw x 0 , Pr y [P(x 0 ,y) ≠ EE(x 0 ,y)] ≥ 2 δ x 4 x 5 ⋮ • At most half the inputs are gone ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ x t n

  35. Fixing the first message x 1 x 2 x 3 • Throw x 0 , Pr y [P(x 0 ,y) ≠ EE(x 0 ,y)] ≥ 2 δ x 4 x 5 ⋮ • At most half the inputs are gone ⋮ ⋮ ⋮ • Fix the most frequent message m* ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ x t n

  36. Fixing the first message x 1 x 2 x 3 • Throw x 0 , Pr y [P(x 0 ,y) ≠ EE(x 0 ,y)] ≥ 2 δ x 4 x 5 ⋮ • At most half the inputs are gone ⋮ ⋮ ⋮ • Fix the most frequent message m* ⋮ ⋮ ⋮ • Let S ⊆ [t] n be inputs on which m* is sent ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ x t n

  37. Fixing the first message x 1 x 2 x 3 • Throw x 0 , Pr y [P(x 0 ,y) ≠ EE(x 0 ,y)] ≥ 2 δ x 4 x 5 ⋮ • At most half the inputs are gone ⋮ ⋮ ⋮ • Fix the most frequent message m* ⋮ ⋮ ⋮ • Let S ⊆ [t] n be inputs on which m* is sent ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ x t n

  38. Fixing the first message x 1 x 2 x 3 • Throw x 0 , Pr y [P(x 0 ,y) ≠ EE(x 0 ,y)] ≥ 2 δ x 4 x 5 ⋮ • At most half the inputs are gone ⋮ ⋮ ⋮ • Fix the most frequent message m* ⋮ ⋮ ⋮ • Let S ⊆ [t] n be inputs on which m* is sent ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ x t n

  39. Fixing the first message x 1 x 2 x 3 • Throw x 0 , Pr y [P(x 0 ,y) ≠ EE(x 0 ,y)] ≥ 2 δ x 4 x 5 ⋮ • At most half the inputs are gone ⋮ ⋮ ⋮ • Fix the most frequent message m* ⋮ ⋮ ⋮ • Let S ⊆ [t] n be inputs on which m* is sent ⋮ ⋮ ⋮ ⋮ ⋮ • C-bits protocol ⇒ ≤ 2 C different messages ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ x t n

  40. Fixing the first message x 1 x 2 x 3 • Throw x 0 , Pr y [P(x 0 ,y) ≠ EE(x 0 ,y)] ≥ 2 δ x 4 x 5 ⋮ • At most half the inputs are gone ⋮ ⋮ ⋮ • Fix the most frequent message m* ⋮ ⋮ ⋮ • Let S ⊆ [t] n be inputs on which m* is sent ⋮ ⋮ ⋮ ⋮ ⋮ • C-bits protocol ⇒ ≤ 2 C different messages ⋮ ⋮ ⋮ ⋮ ⋮ • |S| ≥ t n /2 C+ 1 ⋮ x t n

  41. r-round protocol for EE n ⇒ t (r- 1 )-round protocol for t’ B = 2 C/n [t] n n’ = n/B S S u,v ∈ [t’] n’ S u B u X Randomness repeat B times v v B S S Y

  42. r-round protocol for EE n ⇒ t (r- 1 )-round protocol for t’ B = 2 C/n [t] n n’ = n/B S S u,v ∈ [t’] n’ S u B u X Randomness repeat B times v v B S S Y

  43. r-round protocol for EE n ⇒ t (r- 1 )-round protocol for t’ B = 2 C/n [t] n n’ = n/B S X’ S u,v ∈ [t’] n’ S u B u X Randomness repeat B times v v B S S Y

  44. r-round protocol for EE n ⇒ t (r- 1 )-round protocol for t’ B = 2 C/n [t] n n’ = n/B S X’ S u,v ∈ [t’] n’ S u B u X Randomness repeat B times v v B S S Y ① EE(u,v) ≈ EE(X’, Y)

  45. r-round protocol for EE n ⇒ t (r- 1 )-round protocol for t’ B = 2 C/n [t] n n’ = n/B S X’ S u,v ∈ [t’] n’ S u B u X Randomness repeat B times v v B S S Y ① EE(u,v) ≈ EE(X’, Y) ② Y | X’ is ≈ uniform

  46. r-round protocol for EE n ⇒ t (r- 1 )-round protocol for t’ B = 2 C/n [t] n n’ = n/B S X’ S u,v ∈ [t’] n’ S u B u X Randomness repeat B times v v B S S Y ① EE(u,v) ≈ EE(X’, Y) ② Y | X’ is ≈ uniform ③ X’ ∈ S ⇒ first message fixed

  47. t’ Protocol for EE n’ :

  48. t’ Protocol for EE n’ : Given u,v ∈ [t’] n’

  49. t’ Protocol for EE n’ : Given u,v ∈ [t’] n’ u: 2 3 1 4 2 1 v: 4 2 3 4 1 3

  50. t’ Protocol for EE n’ : Recall n’ = n/B B =2 C/n Given u,v ∈ [t’] n’ u: 2 3 1 4 2 1 v: 4 2 3 4 1 3

  51. t’ Protocol for EE n’ : Recall n’ = n/B B =2 C/n Given u,v ∈ [t’] n’ Repeat each coordinate B times u: 2 3 1 4 2 1 v: 4 2 3 4 1 3

  52. t’ Protocol for EE n’ : Recall n’ = n/B B =2 C/n Given u,v ∈ [t’] n’ Repeat each coordinate B times u B : u: 2 3 1 4 2 1 2 2 2 2 3 3 3 3 1 1 1 1 4 4 4 4 2 2 2 2 1 1 1 1 v B : v: 4 2 3 4 1 3 4 4 4 4 2 2 2 2 3 3 3 3 4 4 4 4 1 1 1 1 3 3 3 3

  53. t’ Protocol for EE n’ : Recall n’ = n/B B =2 C/n Given u,v ∈ [t’] n’ Repeat each coordinate B times u B : u: 2 3 1 4 2 1 2 2 2 2 3 3 3 3 1 1 1 1 4 4 4 4 2 2 2 2 1 1 1 1 v B : v: 4 2 3 4 1 3 4 4 4 4 2 2 2 2 3 3 3 3 4 4 4 4 1 1 1 1 3 3 3 3 Pick a random function f i : [t’] ↦ [t] for each i ∈ [n]

  54. t’ Protocol for EE n’ : Recall n’ = n/B B =2 C/n Given u,v ∈ [t’] n’ Repeat each coordinate B times u B : u: 2 3 1 4 2 1 2 2 2 2 3 3 3 3 1 1 1 1 4 4 4 4 2 2 2 2 1 1 1 1 v B : v: 4 2 3 4 1 3 4 4 4 4 2 2 2 2 3 3 3 3 4 4 4 4 1 1 1 1 3 3 3 3 Pick a random 4 2 7 9 2 7 3 6 2 5 2 6 9 3 1 7 6 7 8 4 2 6 9 3 function f i : [t’] ↦ [t] 6 3 1 3 8 7 1 5 4 7 8 9 9 3 1 7 2 1 3 6 9 2 2 1 for each i ∈ [n] : Phantom match ⦁

  55. t’ Protocol for EE n’ : Recall n’ = n/B B =2 C/n Given u,v ∈ [t’] n’ Repeat each coordinate B times u B : u: 2 3 1 4 2 1 2 2 2 2 3 3 3 3 1 1 1 1 4 4 4 4 2 2 2 2 1 1 1 1 v B : v: 4 2 3 4 1 3 4 4 4 4 2 2 2 2 3 3 3 3 4 4 4 4 1 1 1 1 3 3 3 3 Pick a random 4 2 7 9 2 7 3 6 2 5 2 6 9 3 1 7 6 7 8 4 2 6 9 3 function f i : [t’] ↦ [t] 6 3 1 3 8 7 1 5 4 7 8 9 9 3 1 7 2 1 3 6 9 2 2 1 for each i ∈ [n] : Phantom match ⦁ Permute coordinates randomly

  56. t’ Protocol for EE n’ : Recall n’ = n/B B =2 C/n Given u,v ∈ [t’] n’ Repeat each coordinate B times u B : u: 2 3 1 4 2 1 2 2 2 2 3 3 3 3 1 1 1 1 4 4 4 4 2 2 2 2 1 1 1 1 v B : v: 4 2 3 4 1 3 4 4 4 4 2 2 2 2 3 3 3 3 4 4 4 4 1 1 1 1 3 3 3 3 Pick a random 4 2 7 9 2 7 3 6 2 5 2 6 9 3 1 7 6 7 8 4 2 6 9 3 function f i : [t’] ↦ [t] 6 3 1 3 8 7 1 5 4 7 8 9 9 3 1 7 2 1 3 6 9 2 2 1 for each i ∈ [n] : Phantom match ⦁ Permute 3 2 8 1 5 9 2 3 3 7 6 3 9 7 6 9 7 7 4 2 5 9 5 8 coordinates randomly 1 8 3 1 7 3 9 3 1 1 2 1 2 7 5 3 1 7 6 3 7 9 7 3

  57. t’ Protocol for EE n’ : Recall n’ = n/B B =2 C/n Given u,v ∈ [t’] n’ Repeat each coordinate B times u B : u: 2 3 1 4 2 1 2 2 2 2 3 3 3 3 1 1 1 1 4 4 4 4 2 2 2 2 1 1 1 1 v B : v: 4 2 3 4 1 3 4 4 4 4 2 2 2 2 3 3 3 3 4 4 4 4 1 1 1 1 3 3 3 3 Pick a random 4 2 7 9 2 7 3 6 2 5 2 6 9 3 1 7 6 7 8 4 2 6 9 3 function f i : [t’] ↦ [t] 6 3 1 3 8 7 1 5 4 7 8 9 9 3 1 7 2 1 3 6 9 2 2 1 for each i ∈ [n] : Phantom match ⦁ Permute X: 3 2 8 1 5 9 2 3 3 7 6 3 9 7 6 9 7 7 4 2 5 9 5 8 coordinates Y: randomly 1 8 3 1 7 3 9 3 1 1 2 1 2 7 5 3 1 7 6 3 7 9 7 3

  58. Step 2: Rounding to S B = 2 C/n [t] n n’ = n/B S S u,v ∈ [t’] n’ S u B u X Randomness repeat B times v v B S S Y ① EE(u,v) ≈ EE(X’, Y) ② Y | X’ is ≈ uniform ③ X’ ∈ S ⇒ first message fixed

  59. Step 2: Rounding to S B = 2 C/n [t] n n’ = n/B S X’ S u,v ∈ [t’] n’ S u B u X Randomness repeat B times v v B S S Y ① EE(u,v) ≈ EE(X’, Y) ② Y | X’ is ≈ uniform ③ X’ ∈ S ⇒ first message fixed

  60. • N x = S ∩ Ball ( X, n( 1-1 /B) ) S N x • X’: uniform in N X

  61. • N x = S ∩ Ball ( X, n( 1-1 /B) ) S N x • X’: uniform in N X ③ X’ ∈ S ⇒ first message fixed

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend