on hadamard s maximal determinant problem
play

On Hadamards Maximal Determinant Problem Judy-anne Osborn MSI, ANU - PowerPoint PPT Presentation

On Hadamards Maximal Determinant Problem Judy-anne Osborn MSI, ANU April 2009 Judy-anne Osborn MSI, ANU On Hadamards Maximal Determinant Problem 0 1 0 1 0 0 0 1 1 . . . . . . . . . . . . . . .


  1. On Hadamard’s Maximal Determinant Problem Judy-anne Osborn MSI, ANU April 2009 Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem

  2. 0 1 0 1 0 0 0 1   1 . . . . . . . . .   . . . . . . . . .   1   . . . . . . . . .   0 0   . . . . . . . . .   0 m   . . . . . . . . .   1   . . . . . . . . .   0   . . . . . . . . .   1   . . . . . . . . . . . . . . . . . . m max det =? Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem

  3. A Naive Computer Search Order max det Time 1 1 fast 2 1 fast 3 2 fast 4 3 fast 5 5 fast 6 9 order of days 7 32 order of years 8 56 order of the age of the Universe Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem

  4. As well by hand? I found nested Max Dets ...   1 0 1 0 0 0 5 } 1 1 0 1 0 0 3 }     0 1 1 0 1 0 2 }   9   0 0 1 1 0 1 } }     1 0 0 1 1 0   1 } 1 1 1 0 0 1 1 Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem

  5. As well by hand? I found nested Max Dets ...   1 0 1 0 0 0 5 } 1 1 0 1 0 0 3 }     0 1 1 0 1 0 2 }   9   0 0 1 1 0 1 } }     1 0 0 1 1 0   1 } 1 1 1 0 0 1 1 Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem

  6. As well by hand? I found nested Max Dets ...   1 0 1 0 0 0 5 } 1 1 0 1 0 0 3 }     0 1 1 0 1 0 2 }   9   0 0 1 1 0 1 } }     1 0 0 1 1 0   1 } 1 1 1 0 0 1 1 Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem

  7. As well by hand? I found nested Max Dets ...   1 0 1 0 0 0 5 } 1 1 0 1 0 0 3 }     0 1 1 0 1 0 2 }   9   0 0 1 1 0 1 } }     1 0 0 1 1 0   1 } 1 1 1 0 0 1 1 Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem

  8. As well by hand? I found nested Max Dets ...   1 0 1 0 0 0 5 } 1 1 0 1 0 0 3 }     0 1 1 0 1 0 2 }   9   0 0 1 1 0 1 } }     1 0 0 1 1 0   1 } 1 1 1 0 0 1 1 ◮ But no further! Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem

  9. The problem turns out to be famous ◮ Hadamard’s Maximal Determinant Problem was posed in 1893 Jacques Hadamard Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem

  10. ◮ A little selected history on this century-old question ... Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem

  11. Observe: ◮ 2D: � 1 � 1 � 0 � or 1 � 1 � � 1 � 0 0 � 1 � � � 1 0 1 1 0 1 0 Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem

  12. Geometry: max | det | = max (hyper-)Volume ◮ 3D:   0 1   1     1 1 0 0     1 1   1 1   0   1 0 1 1 1 0   0 1 1 Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem

  13. An equivalent problem: { +1 , − 1 } matrices ( ( ( ( 1 1 1 1 1 1 1 1 ( ( ( ( 1 0 1 2 0 2 0 2 0 2 1 1 1 1 − − − − − − × ( − 2) border add row 1 1 1 0 2 2 0 0 2 2 0 1 1 1 1 − − − − − − 0 1 1 0 2 2 0 0 2 2 1 1 1 1 − − − − − − m × m matrix column ops ( 1 1 1 1 ( − 1 1 1 1 − − − 1 1 1 1 − 1 1 1 1 − row ops ( ( 1 1 1 1 − 1 1 1 1 − − − 1 1 1 1 − − − 1 1 1 1 − Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem

  14. An equivalent problem: { +1 , − 1 } matrices ( ( ( ( 1 1 1 1 1 1 1 1 ( ( ( ( 1 0 1 2 0 2 0 2 0 2 1 1 1 1 − − − − − − × ( − 2) border add row 1 1 1 0 2 2 0 0 2 2 0 1 1 1 1 − − − − − − 0 1 1 0 2 2 0 0 2 2 1 1 1 1 − − − − − − m × m matrix column ops ( 1 1 1 1 ( − 1 1 1 1 − − − 1 1 1 1 − 1 1 1 1 − | det new | = 2 m | det old | row ops ( ( 1 1 1 1 − 1 1 1 1 − − − 1 1 1 1 − − − 1 1 1 1 − Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem

  15. Volume interpretation ⇒ upper bound on | max det | � � } � ± 1 · · · ± 1 � � � � . . ... . . max � � n . . � � � � ± 1 · · · ± 1 � } n ◮ What is the upper bound? Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem

  16. Volume interpretation ⇒ upper bound on | max det | � � � } ± 1 · · · ± 1 � � � � . . ... . . max � � n . . � � � � ± 1 · · · ± 1 � } n ◮ What is the upper bound? � n �� ( ± 1) 2 + · · · + ( ± 1) 2 = n n / 2 Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem

  17. Volume interpretation ⇒ upper bound on | max det | � � � } ± 1 · · · ± 1 � � � � . . ... . . max � � n . . � � � � ± 1 · · · ± 1 � } n ◮ What is the upper bound? � n �� ( ± 1) 2 + · · · + ( ± 1) 2 = n n / 2 ◮ Why? Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem

  18. Volume interpretation ⇒ upper bound on | max det | � � � } ± 1 · · · ± 1 � � � � . . ... . . max � � n . . � � � � ± 1 · · · ± 1 � } n ◮ What is the upper bound? � n �� ( ± 1) 2 + · · · + ( ± 1) 2 = n n / 2 ◮ Why? (Columns/rows orthogonal) Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem

  19. When is the bound tight? ◮ Tight when { +1 , − 1 } square matrix H of order n satisfies HH T = nI Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem

  20. When is the bound tight? ◮ Tight when { +1 , − 1 } square matrix H of order n satisfies HH T = nI ◮ H is called a Hadamard Matrix . Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem

  21. When is the bound tight? ◮ Tight when { +1 , − 1 } square matrix H of order n satisfies HH T = nI ◮ H is called a Hadamard Matrix . ◮ A necessary condition on existence of H is: n = 1 , 2 or n ≡ 0 (mod 4) Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem

  22. When is the bound tight? ◮ Tight when { +1 , − 1 } square matrix H of order n satisfies HH T = nI ◮ H is called a Hadamard Matrix . ◮ A necessary condition on existence of H is: n = 1 , 2 or n ≡ 0 (mod 4) ◮ Hadamard Conjecture (Paley, 1933): this is also sufficient . Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem

  23. Evidence for Hadamard Conjecture ◮ Many constructions for infinite families, including ◮ Sylvester, ∀ 2 r ◮ First Paley, using finite fields, ∀ p r + 1, p prime ◮ Second Paley, using finite fields, ∀ 2 p r + 2, p prime Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem

  24. Evidence for Hadamard Conjecture ◮ Many constructions for infinite families, including ◮ Sylvester, ∀ 2 r ◮ First Paley, using finite fields, ∀ p r + 1, p prime ◮ Second Paley, using finite fields, ∀ 2 p r + 2, p prime ◮ Other ‘constructions’ and ‘ad hoc’ examples due to people including ◮ Williamson ◮ Jenny Seberry Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem

  25. Evidence for Hadamard Conjecture ◮ Many constructions for infinite families, including ◮ Sylvester, ∀ 2 r ◮ First Paley, using finite fields, ∀ p r + 1, p prime ◮ Second Paley, using finite fields, ∀ 2 p r + 2, p prime ◮ Other ‘constructions’ and ‘ad hoc’ examples due to people including ◮ Williamson ◮ Jenny Seberry ◮ Smallest n ≡ 0 (mod 4) currently undecided: n = 668 . Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem

  26. More evidence Order Number of inequivalent Hadamard matrices – see Sloan’s sequence A007299 1 1 2 1 4 1 8 1 12 1 16 5 20 3 24 60 28 487 32 ≥ 3 578 006 36 ≥ 18 292 717 Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem

  27. Max Dets for non-Hadamard orders? Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem

  28. Max Dets for non-Hadamard orders? n ≡ 1 1 5 9 13 17 21 25 | max det | 3 × 1 1 7 × 2 3 15 × 3 5 20 × 4 7 29 × 5 9 42 × 6 11 1 2 n − 1 n ≡ 2 2 6 10 14 18 | max det | 5 × 1 1 18 × 2 3 39 × 3 5 68 × 4 7 1 2 n − 1 n ≡ 3 3 7 11 15 | max det | 9 × 1 1 40 × 2 3 105 × 3 5 1 2 n − 1 Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem

  29. Max Dets for non-Hadamard orders? n ≡ 1 1 5 9 13 17 21 25 | max det | 3 × 1 1 7 × 2 3 15 × 3 5 20 × 4 7 29 × 5 9 42 × 6 11 1 2 n − 1 n ≡ 2 2 6 10 14 18 | max det | 5 × 1 1 18 × 2 3 39 × 3 5 68 × 4 7 1 2 n − 1 n ≡ 3 3 7 11 15 | max det | 9 × 1 1 40 × 2 3 105 × 3 5 1 2 n − 1 Judy-anne Osborn MSI, ANU On Hadamard’s Maximal Determinant Problem

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend