on configuration space integral of smooth sphere bundles
play

ON CONFIGURATION SPACE INTEGRAL OF SMOOTH SPHERE BUNDLES Tadayuki - PowerPoint PPT Presentation

ON CONFIGURATION SPACE INTEGRAL OF SMOOTH SPHERE BUNDLES Tadayuki WATANABE RIMS, Kyoto University Apr. 02, 2008 Aarhus, CTQM Workshop Finite Type Invariants, Fat graphs and Torelli-Johnson-Morita Theory 1 1. INTRODUCTION FUNDAMENTAL


  1. ON CONFIGURATION SPACE INTEGRAL OF SMOOTH SPHERE BUNDLES Tadayuki WATANABE RIMS, Kyoto University Apr. 02, 2008 Aarhus, CTQM Workshop “Finite Type Invariants, Fat graphs and Torelli-Johnson-Morita Theory” 1

  2. 1. INTRODUCTION FUNDAMENTAL PROBLEM: - Classification of smooth M -bundles, or - Determine the homotopy type of B Diff( M ) (Diff( M ) = { ϕ : M → M, C ∞ -diffeom } ; C ∞ -topology). REMARK bijec { smooth M -bundles over B } / isom ← → [ B, B Diff( M )] 2

  3. 1. INTRODUCTION HISTORY: ( M : (homology) sphere) (S. Smale) B Diff( S 2 ) ≃ BO 3 , ? B Diff( S 3 ) ≃ BO 4 ? ( ← Affirmative, A. Hatcher ) 3

  4. 1. INTRODUCTION HISTORY: ( M : (homology) sphere) (S. Smale) B Diff( S 2 ) ≃ BO 3 , ? B Diff( S 3 ) ≃ BO 4 ? ( ← Affirmative, A. Hatcher ) (J. Milnor) B Diff( S 6 ) ≃ / BO 7 (existence of exotic S 7 ). 4

  5. 1. INTRODUCTION HISTORY: ( M : (homology) sphere) (S. Smale) B Diff( S 2 ) ≃ BO 3 , ? B Diff( S 3 ) ≃ BO 4 ? ( ← Affirmative, A. Hatcher ) (J. Milnor) B Diff( S 6 ) ≃ / BO 7 (existence of exotic S 7 ). (S. Novikov) B Diff 0 ( S 7 ) ≃ / BSO 8 . 5

  6. 1. INTRODUCTION HISTORY: ( M : (homology) sphere) (S. Smale) B Diff( S 2 ) ≃ BO 3 , ? B Diff( S 3 ) ≃ BO 4 ? ( ← Affirmative, A. Hatcher ) (J. Milnor) B Diff( S 6 ) ≃ / BO 7 (existence of exotic S 7 ). (S. Novikov) B Diff 0 ( S 7 ) ≃ / BSO 8 . (F. Farrell, W. Hsiang) i << d (stable range) π i ( B Diff( S d )) ⊗ Q ∼ = π i ( BO d +1 ) ⊗ Q ⊕ ( Q or 0) . 6

  7. 1. INTRODUCTION HISTORY: ( M : (homology) sphere) (S. Smale) B Diff( S 2 ) ≃ BO 3 , ? B Diff( S 3 ) ≃ BO 4 ? ( ← Affirmative, A. Hatcher ) (J. Milnor) B Diff( S 6 ) ≃ / BO 7 (existence of exotic S 7 ). (S. Novikov) B Diff 0 ( S 7 ) ≃ / BSO 8 . (F. Farrell, W. Hsiang) i << d (stable range) π i ( B Diff( S d )) ⊗ Q ∼ = π i ( BO d +1 ) ⊗ Q ⊕ ( Q or 0) . (K. Igusa) The extra Q can be detected by “higher FR torsion”. 7

  8. 1. INTRODUCTION PROBLEM (D. Burghelea): Is π i ( B (Diff( S d ) /O d +1 )) ∼ = π i ( B Diff( D d , ∂ )) finite? for each fixed ( i, d ). (M. Kontsevich) (non-stable) M : ’singularly framed’ odd-dim HS → H ∗ ( � CSI (graph homology) ∗ − B Diff( M ); R ) . (G. Kuperberg, D. Thurston) dim M = 3, 3-valent CSI ∈ H 0 ( ⊔ M � B Diff( M ); (certain space of graphs)) is a universal FTI of Ohtsuki, 31 stable d Goussarov-Habiro. 23 non-stable� We give a higher-dim. generalization 15 ?? of this to understand non-stable. 7 3 i 0 4 8 12 16 20 24 28 32 36 40 • : πi ( B Diff( Dd, ∂ )) infinite 8

  9. 1. INTRODUCTION PROBLEM (D. Burghelea): Is π i ( B (Diff( S d ) /O d +1 )) ∼ = π i ( B Diff( D d , ∂ )) finite? for each fixed ( i, d ). (M. Kontsevich) (non-stable) M : ’singularly framed’ odd-dim HS → H ∗ ( � CSI (graph homology) ∗ − B Diff( M ); R ) . (G. Kuperberg, D. Thurston) dim M = 3, 3-valent CSI ∈ H 0 ( ⊔ M � B Diff( M ); (certain space of graphs)) is a universal FTI of Ohtsuki, 31 stable d Goussarov-Habiro. 23 non-stable� We give a higher-dim. generalization 15 ?? of this to understand non-stable. 7 3 i 0 4 8 12 16 20 24 28 32 36 40 • : πi ( B Diff( Dd, ∂ )) infinite 9

  10. 1. INTRODUCTION PROBLEM (D. Burghelea): Is π i ( B (Diff( S d ) /O d +1 )) ∼ = π i ( B Diff( D d , ∂ )) finite? for each fixed ( i, d ). (M. Kontsevich) (non-stable) M : ’singularly framed’ odd-dim HS → H ∗ ( � CSI (graph homology) ∗ − B Diff( M ); R ) . (G. Kuperberg, D. Thurston) dim M = 3, 3-valent CSI ∈ H 0 ( ⊔ M � B Diff( M ); (certain space of graphs)) is a universal FTI of Ohtsuki, 31 stable d Goussarov-Habiro. 23 non-stable� We give a higher-dim. generalization 15 ?? of this to understand non-stable. 7 3 i 0 4 8 12 16 20 24 28 32 36 40 • : πi ( B Diff( Dd, ∂ )) infinite 10

  11. 2. KONTSEVICH’S CHARACTERISTIC CLASSES 2.1. SPACE OF GRAPHS G 2 n := span Q { conn. v-ori. 3-valent graphs, 2 n -vertices } . A 2 n := G 2 n / IHX , AS . IHX = - AS = - 11

  12. � 2. KONTSEVICH’S CHARACTERISTIC CLASSES 2.2. COMPACTIFICATION OF CONFIGURATION SPACE M : (homology) (2 k + 1)-sphere with a fixed pt ∞ ∈ M . C n ( M \ ∞ ) := { ( x 1 , · · · , x n ) ∈ ( M \ ∞ ) × n | x i � = x j ( i � = j ) } , C n ( M \ ∞ ) := Fulton-MacPherson-Kontsevich compactification “= Bℓ Σ ( M × n ) real blow-up” of C n ( M \ ∞ ) . blow incl . down � C 2 ( M ) M × M M × M \ Σ 12

  13. 2. KONTSEVICH’S CHARACTERISTIC CLASSES 2.3. FUNDAMENTAL FORM ω ON C 2 ( M \ ∞ ) -BUNDLE Given a ( D 2 k +1 , ∂ )-bundle π : E → B (with P → B assoc principal), C n ( π ) : EC n ( π ) → B EC n ( π ) := P × Diff( D 2 k +1 ,∂ ) C n ( S 2 k +1 \ ∞ ) ∼ → R 2 k +1 × E given, then If a trivialization (framing) τ E : T fib E − ∃ ω ∈ Ω 2 k dR ( EC 2 ( π )) closed form s.t. ω | ∂ fib EC 2 ( π ) = Sτ ∗ E Vol S 2 k ∈ Ω 2 k dR ( ∂ fib EC 2 ( π )) . � ∼ → S 2 k × E Sτ E : ∂ fib EC 2 ( π )”=” S ( T fib E ) − � ∂ � � 2 k +1 Γ( k + 3 2 ) Vol S 2 k = j =1 x j i dx 1 ∧ · · · ∧ dx 2 k +1 (2 k +1) · π (2 k +1) / 2 ∂x j 13

  14. 2. KONTSEVICH’S CHARACTERISTIC CLASSES 2.3. FUNDAMENTAL FORM ω ON C 2 ( M \ ∞ ) -BUNDLE Given a ( D 2 k +1 , ∂ )-bundle π : E → B (with P → B assoc principal), C n ( π ) : EC n ( π ) → B EC n ( π ) := P × Diff( D 2 k +1 ,∂ ) C n ( S 2 k +1 \ ∞ ) ∼ → R 2 k +1 × E given, then If a trivialization (framing) τ E : T fib E − ∃ ω ∈ Ω 2 k dR ( EC 2 ( π )) closed form s.t. ω | ∂ fib EC 2 ( π ) = Sτ ∗ E Vol S 2 k ∈ Ω 2 k dR ( ∂ fib EC 2 ( π )) . � ∼ → S 2 k × E Sτ E : ∂ fib EC 2 ( π )”=” S ( T fib E ) − � Vol S 2 k : S 2 k Vol S 2 k = 1 , SO 2 k +1 -invariant 14

  15. 2. KONTSEVICH’S CHARACTERISTIC CLASSES 2.4. FROM GRAPHS TO DIFFERENTIAL FORMS We define a linear map Φ : G 2 n → Ω 6 nk dR ( EC 2 n ( π )) by � pr → EC 2 ( π )) ∗ ω. Φ(Γ) := ω e , ω e := ( EC 2 n ( π ) e dR ( EC 2 n ( π )) → Ω 6 nk − 2 n (2 k +1) Fiber integration C 2 n ( π ) ∗ : Ω 6 nk ( B ) dR yields a form C 2 n ( π ) ∗ Φ(Γ) ∈ Ω n (2 k − 2) ( B ). dR Let � [Γ] | Aut Γ | ∈ Ω n (2 k − 2) ζ 2 n ( π ; τ E ) := C 2 n ( π ) ∗ Φ(Γ) ( B ) ⊗ A 2 n . dR Γ ∈G 2 n 15

  16. 2. KONTSEVICH’S CHARACTERISTIC CLASSES 2.4. FROM GRAPHS TO DIFFERENTIAL FORMS We define a linear map Φ : G 2 n → Ω 6 nk dR ( EC 2 n ( π )) by � pr → EC 2 ( π )) ∗ ω. Φ(Γ) := ω e , ω e := ( EC 2 n ( π ) e dR ( EC 2 n ( π )) → Ω 6 nk − 2 n (2 k +1) Fiber integration C 2 n ( π ) ∗ : Ω 6 nk ( B ) dR yields a form C 2 n ( π ) ∗ Φ(Γ) ∈ Ω n (2 k − 2) ( B ). dR Let � [Γ] | Aut Γ | ∈ Ω n (2 k − 2) ζ 2 n ( π ; τ E ) := C 2 n ( π ) ∗ Φ(Γ) ( B ) ⊗ A 2 n . dR Γ 16

  17. 2. KONTSEVICH’S CHARACTERISTIC CLASSES 2.5. THEOREM (Kontsevich). ζ 2 n ( π ; τ E ) : characteristic class of framed ( D 2 k +1 , ∂ ) -bundles, i.e., 1. ζ 2 n ( π ; τ E ) is ( d ⊗ 1) -closed. 2. [ ζ 2 n ( π ; τ E )] ∈ H n (2 k − 2) ( B ; R ⊗ A 2 n ) does not depend on the closed extension ω chosen. 3. [ ζ 2 n ( π ; τ E )] is natural wrt maps between framed bundles. “Proof” By the generalized Stokes formula (for fiber integration) and vanishing of higher degenerations (Kontsevich’s lemma), � ( d ⊗ 1) ζ 2 n ( π ; τ E ) = (IHX + AS) = 0 . 17

  18. 2. KONTSEVICH’S CHARACTERISTIC CLASSES 2.5. THEOREM (Kontsevich). ζ 2 n ( π ; τ E ) : characteristic class of framed ( D 2 k +1 , ∂ ) -bundles, i.e., 1. ζ 2 n ( π ; τ E ) is ( d ⊗ 1) -closed. 2. [ ζ 2 n ( π ; τ E )] ∈ H n (2 k − 2) ( B ; R ⊗ A 2 n ) does not depend on the closed extension ω chosen. 3. [ ζ 2 n ( π ; τ E )] is natural wrt maps between framed bundles. “Proof” By the generalized Stokes formula (for fiber integration) and vanishing of higher degenerations (Kontsevich’s lemma), � ( d ⊗ 1) ζ 2 n ( π ; τ E ) = (IHX + AS) = 0 . 18

  19. 3. FEATURES OF THE SIMPLEST CLASS 3.0. CONTENT OF THIS SECTION - We define an unframed version ˆ Z 2 of the invariant of a ‘pointed’ framed ( D 2 k +1 , ∂ )-bundle π : E → D 2 k − 2 : Z 2 : π 2 k − 2 ( � B Diff( D 2 k +1 , ∂ )) → R � ω 3 ∈ R Z 2 ( π ; τ E ) = ζ 2 ( π ; τ E )[ D 2 k − 2 , ∂ ] | [Θ] �→ 12 = EC 2 ( π ) associated to the ‘Θ-graph’ by introducing a correction term. - Formula for ˆ Z 2 ⇒ ˆ Z 2 detects some exotic smooth structures on the total spaces. 19

  20. 3. FEATURES OF THE SIMPLEST CLASS 3.1. SIGNATURE DEFECT D 4 k - 1 W (correction term): = E cl( E ) * cl( E ) := E ∪ ∂ D 4 k − 1 W closing, canonical gluing. ∼ → R 2 k +1 × E * framing τ E : T fib E − extend (stable) framing τ ′ E on TW | ∂W =cl( E ) . � * L k ( TW ; τ ′ E )[ W, ∂W ]: relative L k -characteristic number. * (Signature defect) ∆ k ( π ; τ E ) := L k ( TW ; τ ′ E )[ W, ∂W ] − sign W gives a well-defined hom. π 2 k − 2 ( � B Diff( D 2 k +1 , ∂ )) → Q . 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend