on coalgebras over algebras
play

On coalgebras over algebras Adriana Balan 1 Alexander Kurz 2 1 - PowerPoint PPT Presentation

On coalgebras over algebras Adriana Balan 1 Alexander Kurz 2 1 University Politehnica of Bucharest, Romania 2 University of Leicester, UK 10th International Workshop on Coalgebraic Methods in Computer Science A. Balan (UPB), A. Kurz (UL) On


  1. On coalgebras over algebras Adriana Balan 1 Alexander Kurz 2 1 University Politehnica of Bucharest, Romania 2 University of Leicester, UK 10th International Workshop on Coalgebraic Methods in Computer Science A. Balan (UPB), A. Kurz (UL) On coalgebras over algebras CMCS 2010 1 / 31

  2. Outline Motivation 1 The final coalgebra of a continuous functor 2 Final coalgebra and lifting 3 Commuting pair of endofunctors and their fixed points 4 A. Balan (UPB), A. Kurz (UL) On coalgebras over algebras CMCS 2010 2 / 31

  3. Motivation Starting data: category C , endofunctor H : C − → C Among fixed points: final coalgebra, initial algebra Categories enriched over complete metric spaces: unique fixed point [Adamek, Reiterman 1994] Categories enriched over cpo: final coalgebra L coincides with initial algebra I [Plotkin, Smyth 1983] A. Balan (UPB), A. Kurz (UL) On coalgebras over algebras CMCS 2010 3 / 31

  4. Motivation Starting data: category C , endofunctor H : C − → C Among fixed points: final coalgebra, initial algebra Categories enriched over complete metric spaces: unique fixed point [Adamek, Reiterman 1994] Categories enriched over cpo: final coalgebra L coincides with initial algebra I [Plotkin, Smyth 1983] Category with no extra structure Set : final coalgebra L is completion of initial algebra I [Barr 1993] Deficit: if H 0 = 0, important cases not covered (as A × ( − ) n , D , P κ + ) A. Balan (UPB), A. Kurz (UL) On coalgebras over algebras CMCS 2010 3 / 31

  5. Motivation Starting data: category C , endofunctor H : C − → C Among fixed points: final coalgebra, initial algebra Categories enriched over complete metric spaces: unique fixed point [Adamek, Reiterman 1994] Categories enriched over cpo: final coalgebra L coincides with initial algebra I [Plotkin, Smyth 1983] Category with no extra structure Set : final coalgebra L is completion of initial algebra I [Barr 1993] Deficit: if H 0 = 0, important cases not covered (as A × ( − ) n , D , P κ + ) Locally finitely presentable categories: Hom ( B , L ) completion of Hom ( B , I ) for all finitely presentable objects B [Adamek 2003] A. Balan (UPB), A. Kurz (UL) On coalgebras over algebras CMCS 2010 3 / 31

  6. In this talk Category: Alg ( M ) for a Set -monad M Alg ( M )-functor: obtained from lifting A. Balan (UPB), A. Kurz (UL) On coalgebras over algebras CMCS 2010 4 / 31

  7. Outline Motivation 1 The final coalgebra of a continuous functor 2 Final coalgebra and lifting 3 Commuting pair of endofunctors and their fixed points 4 A. Balan (UPB), A. Kurz (UL) On coalgebras over algebras CMCS 2010 5 / 31

  8. � � � � Construction of the final coalgebra → Set ω op -continuous Assumption 1: functor H : Set − Terminal sequence H n t t . . . . . . H n 1 1 H 1 A. Balan (UPB), A. Kurz (UL) On coalgebras over algebras CMCS 2010 6 / 31

  9. � � � � � � Construction of the final coalgebra → Set ω op -continuous Assumption 1: functor H : Set − Terminal sequence H n t t . . . . . . H n 1 1 H 1 p n L A. Balan (UPB), A. Kurz (UL) On coalgebras over algebras CMCS 2010 6 / 31

  10. � � � � � � � � � Construction of the final coalgebra → Set ω op -continuous Assumption 1: functor H : Set − Terminal sequence H n t t . . . . . . H n 1 1 H 1 p n L Hp n − 1 τ HL The limit of the terminal sequence is the final H -coalgebra by cocontinuity ξ = τ − 1 : L ≃ HL A. Balan (UPB), A. Kurz (UL) On coalgebras over algebras CMCS 2010 6 / 31

  11. � � � � � � � � Final coalgebras and anamorphisms ξ C For each coalgebra C − → HC there is a cone over the terminal sequence H n t t . . . . . . H n 1 1 H 1 H α 0 HC α n α 0 C A. Balan (UPB), A. Kurz (UL) On coalgebras over algebras CMCS 2010 7 / 31

  12. � � � � � � � � � � Final coalgebras and anamorphisms ξ C For each coalgebra C − → HC there is a cone over the terminal sequence H n t t . . . . . . H n 1 1 H 1 H α 0 p n HC L α n α C α 0 C A. Balan (UPB), A. Kurz (UL) On coalgebras over algebras CMCS 2010 7 / 31

  13. � � � � � � � � � � Final coalgebras and anamorphisms ξ C For each coalgebra C − → HC there is a cone over the terminal sequence H n t t . . . . . . H n 1 1 H 1 H α 0 p n HC L α n α C α 0 C Topology: Discrete topology on H n 1. Initial topology on L , HL and C = ⇒ L complete ultrametric space. All maps are continuous. A. Balan (UPB), A. Kurz (UL) On coalgebras over algebras CMCS 2010 7 / 31

  14. Outline Motivation 1 The final coalgebra of a continuous functor 2 Final coalgebra and lifting 3 Commuting pair of endofunctors and their fixed points 4 A. Balan (UPB), A. Kurz (UL) On coalgebras over algebras CMCS 2010 8 / 31

  15. Lifting functors to algebras over a monad Monad M = ( M , m : M 2 − → M , u : Id − → M ) Adjunction F M ⊣ U M : Alg ( M ) − → Set Initial object M 2 0 − → M 0, terminal object M 1 − → 1 A. Balan (UPB), A. Kurz (UL) On coalgebras over algebras CMCS 2010 9 / 31

  16. � � � � � � � Lifting functors to algebras over a monad Monad M = ( M , m : M 2 − → M , u : Id − → M ) Adjunction F M ⊣ U M : Alg ( M ) − → Set Initial object M 2 0 − → M 0, terminal object M 1 − → 1 Lifting of H to Alg ( M ) ⇐ ⇒ Distributive law λ : MH − → HM λ M M λ � � HM 2 ˜ H M 2 H MHM Alg ( M ) Alg ( M ) m H Hm U M U M λ � HM H � Set MH Set u H � H MH � � � � � λ � Hu � � HM A. Balan (UPB), A. Kurz (UL) On coalgebras over algebras CMCS 2010 9 / 31

  17. � � � � � � � � � � � � � � The final coalgebra and the lifting Assumption 2: there is a lifting � H of H to Alg ( M ) ξ γ Then ( L , L − → HL ) inherits an algebra structure map ML − → L making it the final � H -coalgebra. Lemma Mp n a n → MH n 1 → H n 1 is induced by the H-coalgebra structure The cone ML − − of ML Mp n . . . . . . MH n 1 M 1 MH 1 ML MH n t Mt γ a 0 a 1 a n H n t t . . . . . . H n 1 1 H 1 L p n Hence the unique coalgebra map γ : ML − → L is also the anamorphism α ML : ML − → L for the coalgebra ML . A. Balan (UPB), A. Kurz (UL) On coalgebras over algebras CMCS 2010 10 / 31

  18. � � � � � � � � � � � � � � The final coalgebra and the lifting Diagram in Alg ( M ) with limiting lower sequence Mp n . . . . . . MH n 1 M 1 MH 1 ML MH n t Mt a 0 a 1 a n γ H n t t . . . . . . H n 1 1 H 1 L p n A. Balan (UPB), A. Kurz (UL) On coalgebras over algebras CMCS 2010 11 / 31

  19. � � � � � � � � � � � � � � The final coalgebra and the lifting Diagram in Alg ( M ) with limiting lower sequence Mp n . . . . . . MH n 1 M 1 MH 1 ML MH n t Mt a 0 a 1 a n γ H n t t . . . . . . H n 1 1 H 1 L p n Topology Discrete topology on both sequences Initial topologies on ML and L A. Balan (UPB), A. Kurz (UL) On coalgebras over algebras CMCS 2010 11 / 31

  20. � � � � � � � � � � � � � � The final coalgebra and the lifting Diagram in Alg ( M ) with limiting lower sequence Mp n . . . . . . MH n 1 M 1 MH 1 ML MH n t Mt a 0 a 1 a n γ H n t t . . . . . . H n 1 1 H 1 L p n Topology Discrete topology on both sequences Initial topologies on ML and L Proposition The final H-coalgebra inherits a structure of a topological M -algebra. A. Balan (UPB), A. Kurz (UL) On coalgebras over algebras CMCS 2010 11 / 31

  21. � � � � � � � � Fixed points of lifted functor Initial-terminal � H -sequences: � HM 0 � H n M 0 . . . � . . . M 0 s H n s Hs . . . . . . H n 1 1 H 1 t A. Balan (UPB), A. Kurz (UL) On coalgebras over algebras CMCS 2010 12 / 31

  22. � � � � � � � � Fixed points of lifted functor Initial-terminal � H -sequences: � HM 0 � H n M 0 . . . � . . . M 0 s H n s Hs . . . . . . H n 1 1 H 1 t Assumption 3: M0=1 A. Balan (UPB), A. Kurz (UL) On coalgebras over algebras CMCS 2010 12 / 31

  23. � � � � � Fixed points of lifted functor Initial-terminal � H -sequences: � HM 0 � H n M 0 . . . � . . . M 0 s H n s Hs . . . . . . H n 1 1 H 1 t Assumption 3: M0=1 A. Balan (UPB), A. Kurz (UL) On coalgebras over algebras CMCS 2010 12 / 31

  24. � � � � � � Fixed points of lifted functor [Adamek 2003] � H has also (non empty) initial algebra I built upon this sequence in Alg ( M ), with unique M -algebra monomorphism f : I − → L I � � � � i n � � � � � � � � � � H 1 � H n 1 � . . . � � . . . � 1 f � ��������������� t H n t Ht p n L A. Balan (UPB), A. Kurz (UL) On coalgebras over algebras CMCS 2010 12 / 31

  25. Main result Theorem Let H be a Set-endofunctor ω op -continuous and M a monad on Set such that: 1 H admits a lifting ˜ H to Alg ( M ) 2 M 0 = 1 in Alg ( M ) Then the final H-coalgebra is the completion of the initial � H-algebra under a suitable (ultra)metric. A. Balan (UPB), A. Kurz (UL) On coalgebras over algebras CMCS 2010 13 / 31

  26. � Idea of the proof... Take on I the coarsest topology such that f is continuous I f L A. Balan (UPB), A. Kurz (UL) On coalgebras over algebras CMCS 2010 14 / 31

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend