on birman s sequence of hardy rellich type inequalities
play

On Birmans Sequence of Hardy-Rellich Type Inequalities Isaac B. - PowerPoint PPT Presentation

On Birmans Sequence of Hardy-Rellich Type Inequalities Isaac B. Michael (joint with F. Gesztesy, L.L. Littlejohn and R. Wellman) IWOTA Conference - Chemnitz August 14-18, 2017 1 / 29 Introduction In 1961, M. S. Birman established the


  1. On Birman’s Sequence of Hardy-Rellich Type Inequalities Isaac B. Michael (joint with F. Gesztesy, L.L. Littlejohn and R. Wellman) IWOTA Conference - Chemnitz August 14-18, 2017 1 / 29

  2. Introduction In 1961, M. ˇ S. Birman established the following sequence of integral inequalities: M. ˇ S Birman (1961) For n ∈ N and f ∈ C n 0 ((0 , ∞ )) , � � � ∞ � ∞ 2 � 2 dx ≥ ((2 n − 1)!!) 2 � � � � f ( x ) � f ( n ) ( x ) � � dx . ( I n ) � � 2 2 n x n 0 0 In particular, I 1 is the classical Hardy inequality � � � ∞ � ∞ 2 � � � � � 2 dx ≥ 1 f ( x ) � f ′ ( x ) � � dx , � � 4 x 0 0 and I 2 is the Rellich inequality � � � ∞ � ∞ 2 � � � � � 2 dx ≥ 9 f ( x ) � f ′′ ( x ) � � dx . � � x 2 16 0 0 2 / 29

  3. Introduction Our joint paper shows: A new proof of Birman’s inequalities on a more general Hilbert space H n ([0 , ∞ )) of functions on [0 , ∞ ). For any 0 < b < ∞ , these inequalities hold on the standard Sobolev space H n 0 ((0 , b )). Birman’s constants ((2 n − 1)!!) 2 / 2 2 n in these inequalities are best possible and the only function that gives equality is the function identically zero in L 2 ((0 , ∞ )) . Birman’s inequalities are closely related to a sequence of generalized aro operators , { T n } , with interesting spectral continuous Ces´ properties. This generalized sequence of inequalities extends mutatis mutandis to H -valued functions, where H is a separable Hilbert space . 3 / 29

  4. The Function Spaces H n ([0 , ∞ )) and H n ((0 , ∞ )) ′ Definition 1 (The Function Space H n ([0 , ∞ ))) Let n ∈ N . Define the function space H n ([0 , ∞ )) via � � � f ( j ) ∈ AC loc ([0 , ∞ )); f ( n ) ∈ L 2 ((0 , ∞ )); H n ([0 , ∞ )) := f : [0 , ∞ ) → C � f ( j ) (0) = 0 , j = 0 , 1 , . . . , n − 1 . Note: G. H. Hardy , J. E. Littlewood , and G. P´ olya proved the classical Hardy inequality I 1 on H 1 in 1934. The fact f ∈ H n ([0 , ∞ )) ⇒ f ′ ∈ H n − 1 ([0 , ∞ )) . is important in the new proof of Birman’s inequalities. When endowed with the inner product � ∞ f ( n ) ( x ) g ( n ) ( x ) dx , ( f , g ) H n ([0 , ∞ )) := 0 H n ([0 , ∞ )) is a Hilbert space . 4 / 29

  5. The Function Spaces H n ([0 , ∞ )) and H n ((0 , ∞ )) ′ Proposition 1 The inner product space ( H n ([0 , ∞ )) , ( · , · ) H n ([0 , ∞ )) ) is actually a Hilbert space. In addition, C ∞ 0 ((0 , ∞ )) is dense in ( H n ([0 , ∞ )) , ( · , · ) H n ([0 , ∞ )) ) . Caution: We emphasize that H n ([0 , ∞ )) � = H n 0 ((0 , ∞ )) , n ∈ N , with H n 0 ((0 , ∞ )) the standard Sobolev space obtained upon completing C ∞ 0 ((0 , ∞ )) in the norm of H n ((0 , ∞ )). Indeed, define � f ∈ H n ([0 , ∞ )) via, � 0 , x near 0 , � f ( x ) = x (2 n − 1) / 2 / ln( x ) , x near ∞ , such that f ( j ) ∈ AC loc ([0 , ∞ )) , � j = 0 , 1 , . . . , n . f ( j ) / Calculations show � ∈ L 2 ((0 , ∞ )), 0 ≤ j ≤ n − 1 . 5 / 29

  6. The Function Spaces H n ([0 , ∞ )) and H n ((0 , ∞ )) ′ Theorem 2 is used in the new proof of Birman’s inequalities. Theorem 2 Let f ∈ H n ([0 , ∞ )) . Then (i) f ( n − j ) / x j ∈ L 2 ((0 , ∞ )) for j = 0 , 1 , . . . n ; In particular, ⇒ f ′ ∈ H n − 1 ([0 , ∞ )) ; f ∈ H n ([0 , ∞ )) = � � 2 f ( j ) ( x ) j = 0 , 1 , . . . , n − 1; (ii) lim x →∞ x 2 n − 2 j − 1 = 0 , � � 2 f ( j ) ( x ) (iii) lim x ↓ 0 x 2 n − 2 j − 1 = 0 , j = 0 , 1 , . . . , n − 1 . The above is proved using an integral inequality independently due to G. Tomaselli (1969), G. Talenti (1969), R. S. Chisholm & W. N. Everitt (1971), and B. Muckenhoupt (1972). 6 / 29

  7. The Function Spaces H n ([0 , ∞ )) and H n ((0 , ∞ )) ′ Consider the spaces H n ((0 , ∞ )) ′ and D n ([0 , ∞ )) given below. Definition 3 (The Function Space H n ((0 , ∞ )) ′ ) Let n ∈ N . Define the function space H n ((0 , ∞ )) ′ via � � H n ((0 , ∞ )) ′ := � f ( j ) ∈ AC loc ((0 , ∞ )) , f : (0 , ∞ ) → C � j = 0 , 1 , . . . , n − 1; f ( n ) , f / x n ∈ L 2 ((0 , ∞ )) . Definition 4 (The Function Space D n ([0 , ∞ ))) Let n ∈ N . Define the function space D n ([0 , ∞ )) via � �� x � t 1 � t n − 1 � � � � f ∈ L 2 ((0 , ∞ )) D n ([0 , ∞ )) := · · · f ( t ) dtdt n − 1 . . . dt 1 0 0 0 Surprisingly, H n ([0 , ∞ )) is equal to both spaces. Theorem 5 For each n ∈ N , H n ([0 , ∞ )) = H n ((0 , ∞ )) ′ = D n ([0 , ∞ )) . 7 / 29

  8. A New Proof of Birman’s Hardy-Rellich Type Inequalities Theorem 6 (Birman’s Inequalities on H n ([0 , ∞ ))) Let n ∈ N and 0 � = f ∈ H n ([0 , ∞ )) . Then, � � � ∞ � ∞ � � dx > ((2 n − 1)!!) 2 2 � � 2 f ( x ) � � � f ( n ) ( x ) � � dx . � � � 2 2 n x n 0 0 Our new proof of Birman’s inequalities consists of iterating Hardy’s inequality, with repeated use of the elementary inequality 2 xy ≤ ε x 2 + ε − 1 y 2 , x , y ∈ R , ε > 0 . This, integration by parts, and the Cauchy–Schwarz inequality, results in � � ∞ � ∞ | f ( x ) | 2 ( − ε 2 + ε ) � � dx , n = 1 , � 2 dx ≥ � f ( n ) ( x ) x 2 0 � ∞ | f ( x ) | 2 2 2 n − 2 ( − ε 2 + (2 n − 1) ε ) (2 n − 3)!! x 2 n dx , n ≥ 2 . 0 0 Maximizing over ε ∈ (0 , ∞ ) proves the theorem. 8 / 29

  9. Optimality of Birman’s Constant Theorem 7 (Optimality of Birman’s Constant) The constant ((2 n − 1)!!) 2 / 2 2 n in Birman’s inequalities is best possible on H n ([0 , ∞ )) for all n ∈ N . Recalling D n ([0 , ∞ )) = H n ([0 , ∞ )), where �� x � � � t 1 � t n − 1 � � � f ∈ L 2 ((0 , ∞ )) D n ([0 , ∞ )) := · · · f ( t ) dtdt n − 1 . . . dt 1 , 0 0 0 leads to the construction of an interesting linear operator T n . Definition 8 (The Linear Operator T n ) Let n ∈ N . Define the linear operator T n on L 2 ((0 , ∞ )) via � x � t 1 � t n − 1 ( T n f )( x ) := 1 f ∈ L 2 ((0 , ∞ )) . · · · f ( t ) dtdt n − 1 . . . dt 1 , x n 0 0 0 Note: T n f ∈ L 2 ((0 , ∞ )), f ∈ L 2 ((0 , ∞ )) by Thms. 5, 2 ( i ). 9 / 29

  10. Generalized Continuous C´ esaro Operators T n The operator T n is a generalization of the continuous C´ esaro operator on L 2 ((0 , ∞ )), � x ( T 1 f )( x ) = 1 f ∈ L 2 ((0 , ∞ )) f ( x ) dx , x 0 also known as the classical Hardy (integral) operator . Birman’s inequalities are closely related to T n , which posseses several interesting properties of its own. Theorem 9 (Boundedness and Non-Compactness of T n ) Let n ∈ N and define T n as above. Then T n is bounded in L 2 ((0 , ∞ )) with operator norm 2 n � T n � = (2 n − 1)!! . T n is not compact ( it has purely a.c. spectrum ) . 10 / 29

  11. Generalized Continuous C´ esaro Operators T n Theorem 10 (Invertibility of T n ) Define T n , n ∈ N , as above. Then T n is invertible and � � � � � � � f ∈ AC ( n − 1) T − 1 T − n f ∈ L 2 ((0 , ∞ )) dom = dom = ((0 , ∞ )); n 1 loc � x j f ( j ) ∈ L 2 ((0 , ∞ )) , j = 1 , . . . , n , � � ( x ) = d n � � T − 1 T − 1 dx n x n f ( x ) , f ∈ dom . n f n Note: T n is not boundedly invertible as 0 ∈ σ ( T n ), n ∈ N . n ) g , it is necessary that lim x → 0 + ( x n g ( x )) ( j ) = 0, For g = ( T n ◦ T − 1 0 ≤ j ≤ n − 1. Surprisingly, this is consequence of lying in the space above. Lemma 11 ((0 , ∞ )) and x k f ( k ) ∈ L 2 ((0 , ∞ )) for Let n ∈ N . Assume f ∈ AC ( n − 1) loc k = 0 , 1 , . . . , n. Then x ↓ 0 ( x n f ( x )) ( j ) = 0 , lim j = 0 , 1 , . . . , n − 1 . 11 / 29

  12. Generalized Continuous C´ esaro Operators T n We introduce the unitary Mellin transform , M , given by  L 2 ((0 , ∞ ); dx ) → L 2 ( R ; d λ ) ,    � a f �→ ( M f )( λ ) ≡ f ∗ ( λ ) := (2 π ) − 1 / 2 s-lim a →∞ 1 / a f ( x ) x − (1 / 2)+ i λ dx M :   for a.e. λ ∈ R ,   L 2 ( R ; d λ ) → L 2 ((0 , ∞ ); dx ) ,   M − 1 :  � b f ∗ �→ ( M − 1 f ∗ )( x ) ≡ f ( x ) := (2 π ) − 1 / 2 s-lim b →∞ − b f ∗ ( λ ) x − (1 / 2) − i λ d λ   for a.e. x ∈ (0 , ∞ ).  The fact, � d � dx x − 1 x − (1 / 2) − i λ = λ x − (1 / 2) − i λ , i x ∈ (0 , ∞ ) , λ ∈ R , 2 leads to the following definition of the operator S 1 in L 2 ((0 , ∞ ); dx ), � � � � T − 1 − 2 − 1 I L 2 ((0 , ∞ )) T − 1 S 1 := i , dom( S 1 ) = dom , 1 1 and shows S 1 is unitarily equivalent to the operator of multiplication by the independent variable in L 2 ( R ; d λ ), � M S 1 M − 1 f ∗ � ( λ ) = λ f ∗ ( λ ) for a.e. λ ∈ R and for all f ∗ ∈ L 2 ( R ; d λ ) such that λ f ∗ ∈ L 2 ( R ; d λ ). 12 / 29

  13. Generalized Continuous C´ esaro Operators T n Summarizing, the Mellin transform diagonalizes S 1 and hence T 1 . Thus, the spectrum, and normality, of T 1 can be determined through study of S 1 . Theorem 12 Define S 1 as above. Then S 1 is self-adjoint and hence T 1 is normal. Moreover, the spectra of S 1 and T 1 are simple and purely absolutely continuous . In particular, σ ( S 1 ) = σ ac ( S 1 ) = R , σ ( T 1 ) = σ ac ( T 1 ) = C (1; 1) . Here C ( z 0 ; r 0 ) ⊂ C denotes the circle of radius r 0 > 0 centered at z 0 ∈ C . Note: The spectrum of T 1 was originally computed by A. Brown , P. R. Halmos , and A. L. Shields in 1965. These preliminary results are important in determining the spectral properties of T n for all n ∈ N . 13 / 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend