on 2 k k connected graphs
play

On (2 k , k )-connected graphs Zolt an Szigeti Combinatorial - PowerPoint PPT Presentation

On (2 k , k )-connected graphs Zolt an Szigeti Combinatorial Optimization Group Laboratoire G-SCOP INP Grenoble, France 11 septembre 2015 Joint work with : Olivier Durand de Gevigney Z. Szigeti (G-SCOP, Grenoble) On (2 k , k ) -connected


  1. On (2 k , k )-connected graphs Zolt´ an Szigeti Combinatorial Optimization Group Laboratoire G-SCOP INP Grenoble, France 11 septembre 2015 Joint work with : Olivier Durand de Gevigney Z. Szigeti (G-SCOP, Grenoble) On (2 k , k ) -connected graphs 11 septembre 2015 1 / 20

  2. Outline Results on : Orientation Construction Splitting off Augmentation Concerning : Edge-connectivity (4 , 2)-connectivity (2 k , k )-connectivity Z. Szigeti (G-SCOP, Grenoble) On (2 k , k ) -connected graphs 11 septembre 2015 2 / 20

  3. Orientation : arc-connectivity Definition 1 A digraph D is called k-arc-connected if ∀ ∅ � = X ⊂ V , | ρ D ( X ) | ≥ k . 2 A graph G is called k-edge-connected if ∀ ∅ � = X ⊂ V , d G ( X ) ≥ k . Z. Szigeti (G-SCOP, Grenoble) On (2 k , k ) -connected graphs 11 septembre 2015 3 / 20

  4. Orientation : arc-connectivity Definition 1 A digraph D is called k-arc-connected if ∀ ∅ � = X ⊂ V , | ρ D ( X ) | ≥ k . 2 A graph G is called k-edge-connected if ∀ ∅ � = X ⊂ V , d G ( X ) ≥ k . Theorem (Nash-Williams) G has a k-arc-connected orientation if and only if G is 2 k-edge-connected. Z. Szigeti (G-SCOP, Grenoble) On (2 k , k ) -connected graphs 11 septembre 2015 3 / 20

  5. Orientation : arc-connectivity Definition 1 A digraph D is called k-arc-connected if ∀ ∅ � = X ⊂ V , | ρ D ( X ) | ≥ k . 2 A graph G is called k-edge-connected if ∀ ∅ � = X ⊂ V , d G ( X ) ≥ k . Theorem (Nash-Williams) G has a k-arc-connected orientation if and only if G is 2 k-edge-connected. Necessity : k k X V − X � G Z. Szigeti (G-SCOP, Grenoble) On (2 k , k ) -connected graphs 11 septembre 2015 3 / 20

  6. Orientation : arc-connectivity Definition 1 A digraph D is called k-arc-connected if ∀ ∅ � = X ⊂ V , | ρ D ( X ) | ≥ k . 2 A graph G is called k-edge-connected if ∀ ∅ � = X ⊂ V , d G ( X ) ≥ k . Theorem (Nash-Williams) G has a k-arc-connected orientation if and only if G is 2 k-edge-connected. Necessity : 2 k X V − X G Z. Szigeti (G-SCOP, Grenoble) On (2 k , k ) -connected graphs 11 septembre 2015 3 / 20

  7. Orientation : k -vertex-connectivity Definition 1 A digraph D is called k-vertex-connected if | V | ≥ k + 1, ∀ X ⊂ V , | X | = k − 1 , D − X is 1-arc-connected. 2 A graph G is called k-vertex-connected if | V | ≥ k + 1, ∀ X ⊂ V , | X | = k − 1 , G − X is connected. Z. Szigeti (G-SCOP, Grenoble) On (2 k , k ) -connected graphs 11 septembre 2015 4 / 20

  8. Orientation : k -vertex-connectivity Definition 1 A digraph D is called k-vertex-connected if | V | ≥ k + 1, ∀ X ⊂ V , | X | = k − 1 , D − X is 1-arc-connected. 2 A graph G is called k-vertex-connected if | V | ≥ k + 1, ∀ X ⊂ V , | X | = k − 1 , G − X is connected. Conjecture (Frank) G has a k-vertex-connected orientation if and only if | V | ≥ k + 1 and ∀ X ⊂ V , | X | < k, G − X is (2 k − 2 | X | ) -edge-connected. Z. Szigeti (G-SCOP, Grenoble) On (2 k , k ) -connected graphs 11 septembre 2015 4 / 20

  9. Orientation : k -vertex-connectivity Definition 1 A digraph D is called k-vertex-connected if | V | ≥ k + 1, ∀ X ⊂ V , | X | = k − 1 , D − X is 1-arc-connected. 2 A graph G is called k-vertex-connected if | V | ≥ k + 1, ∀ X ⊂ V , | X | = k − 1 , G − X is connected. Conjecture (Frank) G has a k-vertex-connected orientation if and only if | V | ≥ k + 1 and ∀ X ⊂ V , | X | < k, G − X is (2 k − 2 | X | ) -edge-connected. Theorem (Durand de Gevigney) ( k ≥ 3) 1 This conjecture is false. Z. Szigeti (G-SCOP, Grenoble) On (2 k , k ) -connected graphs 11 septembre 2015 4 / 20

  10. Orientation : k -vertex-connectivity Definition 1 A digraph D is called k-vertex-connected if | V | ≥ k + 1, ∀ X ⊂ V , | X | = k − 1 , D − X is 1-arc-connected. 2 A graph G is called k-vertex-connected if | V | ≥ k + 1, ∀ X ⊂ V , | X | = k − 1 , G − X is connected. Conjecture (Frank) G has a k-vertex-connected orientation if and only if | V | ≥ k + 1 and ∀ X ⊂ V , | X | < k, G − X is (2 k − 2 | X | ) -edge-connected. Theorem (Durand de Gevigney) ( k ≥ 3) 1 This conjecture is false. 2 Deciding whether G has a k-vertex-connected orientation is NP-complete. Z. Szigeti (G-SCOP, Grenoble) On (2 k , k ) -connected graphs 11 septembre 2015 4 / 20

  11. Counter-example for k = 3 Example of Durand de Gevigney Z. Szigeti (G-SCOP, Grenoble) On (2 k , k ) -connected graphs 11 septembre 2015 5 / 20

  12. Orientation : 2-vertex-connectivity Remark (Necessary condition) Example If � G is 2-vertex-connected, then Z. Szigeti (G-SCOP, Grenoble) On (2 k , k ) -connected graphs 11 septembre 2015 6 / 20

  13. Orientation : 2-vertex-connectivity Remark (Necessary condition) Example If � G is 2-vertex-connected, then | V | ≥ 3, Z. Szigeti (G-SCOP, Grenoble) On (2 k , k ) -connected graphs 11 septembre 2015 6 / 20

  14. Orientation : 2-vertex-connectivity Remark (Necessary condition) Example If � G is 2-vertex-connected, then | V | ≥ 3, 1 G is 4-edge-connected and, Z. Szigeti (G-SCOP, Grenoble) On (2 k , k ) -connected graphs 11 septembre 2015 6 / 20

  15. Orientation : 2-vertex-connectivity Remark (Necessary condition) Example If � G is 2-vertex-connected, then | V | ≥ 3, 1 G is 4-edge-connected and, 2 for all v ∈ V , G − v is 2-edge-connected. Z. Szigeti (G-SCOP, Grenoble) On (2 k , k ) -connected graphs 11 septembre 2015 6 / 20

  16. Orientation : 2-vertex-connectivity Definition Example A graph G is called (4 , 2) -connected if | V | ≥ 3, 1 G is 4-edge-connected and, 2 for all v ∈ V , G − v is 2-edge-connected. Z. Szigeti (G-SCOP, Grenoble) On (2 k , k ) -connected graphs 11 septembre 2015 6 / 20

  17. Orientation : 2-vertex-connectivity Definition Example A graph G is called (4 , 2) -connected if | V | ≥ 3, 1 G is 4-edge-connected and, 2 for all v ∈ V , G − v is 2-edge-connected. Theorem (Sufficent condition) A graph G has a 2 -vertex-connected orientation 1 if G is (4 , 2) -connected and Eulerian (Berg, Jord´ an). Z. Szigeti (G-SCOP, Grenoble) On (2 k , k ) -connected graphs 11 septembre 2015 6 / 20

  18. Orientation : 2-vertex-connectivity Definition Example A graph G is called (4 , 2) -connected if | V | ≥ 3, 1 G is 4-edge-connected and, 2 for all v ∈ V , G − v is 2-edge-connected. Theorem (Sufficent condition) A graph G has a 2 -vertex-connected orientation 1 if G is (4 , 2) -connected and Eulerian (Berg, Jord´ an). 2 if G is 18 -vertex-connected (Jord´ an). Z. Szigeti (G-SCOP, Grenoble) On (2 k , k ) -connected graphs 11 septembre 2015 6 / 20

  19. Orientation : 2-vertex-connectivity Definition Example A graph G is called (4 , 2) -connected if | V | ≥ 3, 1 G is 4-edge-connected and, 2 for all v ∈ V , G − v is 2-edge-connected. Theorem (Sufficent condition) A graph G has a 2 -vertex-connected orientation 1 if G is (4 , 2) -connected and Eulerian (Berg, Jord´ an). 2 if G is 18 -vertex-connected (Jord´ an). 3 if G is 14 -vertex-connected (Cheriyan, Durand de Gevigney, Szigeti). Z. Szigeti (G-SCOP, Grenoble) On (2 k , k ) -connected graphs 11 septembre 2015 6 / 20

  20. Orientation : 2-vertex-connectivity Definition Example A graph G is called (4 , 2) -connected if | V | ≥ 3, 1 G is 4-edge-connected and, 2 for all v ∈ V , G − v is 2-edge-connected. Theorem (Sufficent condition) A graph G has a 2 -vertex-connected orientation 1 if G is (4 , 2) -connected and Eulerian (Berg, Jord´ an). 2 if G is 18 -vertex-connected (Jord´ an). 3 if G is 14 -vertex-connected (Cheriyan, Durand de Gevigney, Szigeti). Theorem (Thomassen) G has a 2 -vertex-connected orientation if and only if G is (4 , 2) -connected. Z. Szigeti (G-SCOP, Grenoble) On (2 k , k ) -connected graphs 11 septembre 2015 6 / 20

  21. Construction : edge-connectivity Theorem (Lov´ asz) Example A graph is 2 k-edge-connected if and only if it can be obtained from K 2 k by a sequence of 2 the following two operations : (a) adding a new edge, (b) pinching k edges. Z. Szigeti (G-SCOP, Grenoble) On (2 k , k ) -connected graphs 11 septembre 2015 7 / 20

  22. Construction : edge-connectivity Theorem (Lov´ asz) Example A graph is 2 k-edge-connected if and only if it can be obtained from K 2 k by a sequence of 2 the following two operations : (a) adding a new edge, (b) pinching k edges. Z. Szigeti (G-SCOP, Grenoble) On (2 k , k ) -connected graphs 11 septembre 2015 7 / 20

  23. Construction : edge-connectivity Theorem (Lov´ asz) Example A graph is 2 k-edge-connected if and only if it can be obtained from K 2 k by a sequence of 2 the following two operations : (a) adding a new edge, (b) pinching k edges. Z. Szigeti (G-SCOP, Grenoble) On (2 k , k ) -connected graphs 11 septembre 2015 7 / 20

  24. Construction : edge-connectivity Theorem (Lov´ asz) Example A graph is 2 k-edge-connected if and only if it can be obtained from K 2 k by a sequence of 2 the following two operations : (a) adding a new edge, (b) pinching k edges. Z. Szigeti (G-SCOP, Grenoble) On (2 k , k ) -connected graphs 11 septembre 2015 7 / 20

  25. Construction : edge-connectivity Theorem (Lov´ asz) Example A graph is 2 k-edge-connected if and only if it can be obtained from K 2 k by a sequence of 2 the following two operations : (a) adding a new edge, (b) pinching k edges. Z. Szigeti (G-SCOP, Grenoble) On (2 k , k ) -connected graphs 11 septembre 2015 7 / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend