oklo case study in extracting information on fundamental
play

Oklo: case study in extracting information on fundamental - PowerPoint PPT Presentation

Oklo: case study in extracting information on fundamental interactions from CN processes Edward Davis edward.davis@ku.edu.kw Kuwait University ACFI Workshop: Tests of Time-Reversal in Nuclear and Hadronic Processes (November 6 to 8,


  1. Oklo: case study in extracting information on fundamental interactions from CN processes Edward Davis edward.davis@ku.edu.kw Kuwait University ACFI Workshop: “Tests of Time-Reversal in Nuclear and Hadronic Processes” (November 6 to 8, 2014)

  2. Outline Introduction What is Oklo? Why is Oklo interesting? Interpretation of Oklo Unified treatment Earlier estimate of sensitivity to quark mass Interpretation of Oklo within many-body chiral EFT model Ingredients of model Sensitivity to quark mass: approximations & results Comparisons with epithermal TRNI studies Analysis in epithermal regime Final result Final thoughts

  3. What is Oklo? ◮ Site (in Gabon) of natural fission reactors ◮ active ∼ 2 × 10 9 years ago ◮ characteristic distribution of isotopes ( � = natural abundances) ◮ SLOW neutron + HEAVY nucleus = SENSITIVE receiver

  4. Why is Oklo interesting? ◮ Bounds on shifts in resonances = ⇒ Most restrictive bound on ∆ α = α then − α now α/α ( yr − 1 ) z ∆ α/α now ˙ Atomic clock (Al + /Hg + ) ( − 1 . 6 ± 2 . 3) × 10 − 17 0 Oklo ( n + 149 Sm ) ( − 1 . 0 �→ 0 . 7) × 10 − 8 ( − 4 �→ 5) × 10 − 18 0.16 ( − 0 . 25 ± 1 . 6) × 10 − 6 Meteorites 0.43 ( − 5 . 7 ± 1 . 1) × 10 − 6 Quasar absorption (MM) 0 . 2 − 4 . 2 10 3 Cosmic µ wave background − 0 . 013 �→ 0 . 015 10 9 < 6 × 10 − 2 Big-bang nucleosynthesis Adapted from ProgTheorPhys.126.993. [Oklo result: ModPhysLettA.27.1250232]

  5. Why is Oklo interesting? ◮ Bounds on shifts in resonances = ⇒ Most restrictive bound on ∆ α = α then − α now α/α ( yr − 1 ) z ∆ α/α now ˙ Atomic clock (Al + /Hg + ) ( − 1 . 6 ± 2 . 3) × 10 − 17 0 Oklo ( n + 149 Sm ) ( − 1 . 0 �→ 0 . 7) × 10 − 8 ( − 4 �→ 5) × 10 − 18 0.16 ( − 0 . 25 ± 1 . 6) × 10 − 6 Meteorites 0.43 ( − 5 . 7 ± 1 . 1) × 10 − 6 Quasar absorption (MM) 0 . 2 − 4 . 2 10 3 Cosmic µ wave background − 0 . 013 �→ 0 . 015 10 9 < 6 × 10 − 2 Big-bang nucleosynthesis Adapted from ProgTheorPhys.126.993. [Oklo result: ModPhysLettA.27.1250232] ◮ Issue: influence of QCD parameters, specifically changes in light quark mass m q ≡ 1 2 ( m u + m d ) ?

  6. Interpretation of Oklo: unified treatment [IntJModPhysE.23.1430007] � � ∆ X q ∆ α m q ◮ ∆ E r ≡ E r ( Oklo ) − E r ( now ) = k q + k α X q = X q α Λ QCD ◮ k q independent of mass number A ! ◮ Conjecture based on study of p-shell nuclei/schematic CN model [PhysRevC.79.034302/PhysRevD.67.063513] ◮ k q susceptible to nuclear matter analysis ◮ Order of magnitude estimate for k q ? Model dependent k q ≃ +10 MeV k q ≃ − 40 MeV (Walecka model) (Chiral model) ( k α ≃ − 1 MeV [NuclPhysB.480.37] )

  7. Interpretation of Oklo: unified treatment [IntJModPhysE.23.1430007] � � ∆ X q ∆ α m q ◮ ∆ E r ≡ E r ( Oklo ) − E r ( now ) = k q + k α X q = X q α Λ QCD ◮ k q independent of mass number A ! ◮ Conjecture based on study of p-shell nuclei/schematic CN model [PhysRevC.79.034302/PhysRevD.67.063513] ◮ k q susceptible to nuclear matter analysis ◮ Order of magnitude estimate for k q ? Model dependent k q ≃ +10 MeV k q ≃ − 40 MeV (Walecka model) (Chiral model) ( k α ≃ − 1 MeV [NuclPhysB.480.37] )

  8. Interpretation of Oklo: Walecka model estimate of k q [PhysRevC.79.034302] CN ◮ Shift δ E r (due to δ X q ) − − − → Depth U 0 of nuclear mean-field model � δ m N � δ E r + 2 δ r 0 + δ U 0 1 ≈ − 3 ) ( R = r 0 A U 0 m N r 0 U 0 � �� � Independent of A ◮ Walecka model estimate of U 0 -term implies (Ignore δ r 0 ) � � δ X q δ E r ≈ 7 . 50 δ m S − 5 . 50 δ m V − δ m N 7 . 50 K q S − 5 . 50 K q V − K q ≡ N U 0 m S m V m N X q ◮ Uncertain microscopic interpretation of scalar S and vector V No first principles calculation of K q S , K q − → bosons V K q S , K q V chosen such that k q ∼ +10 MeV ◮ In PhysRevC.79.34302 ,

  9. Interpretation of Oklo: Walecka model estimate of k q [PhysRevC.79.034302] CN ◮ Shift δ E r (due to δ X q ) − − − → Depth U 0 of nuclear mean-field model � δ m N � δ E r + 2 δ r 0 + δ U 0 1 ≈ − 3 ) ( R = r 0 A U 0 m N r 0 U 0 � �� � Independent of A ◮ Walecka model estimate of U 0 -term implies (Ignore δ r 0 ) � � δ X q δ E r ≈ 7 . 50 δ m S − 5 . 50 δ m V − δ m N 7 . 50 K q S − 5 . 50 K q V − K q ≡ N U 0 m S m V m N X q ◮ Uncertain microscopic interpretation of scalar S and vector V No first principles calculation of K q S , K q − → bosons V K q S , K q V chosen such that k q ∼ +10 MeV ◮ In PhysRevC.79.34302 ,

  10. Interpretation of Oklo: Walecka model estimate of k q [PhysRevC.79.034302] CN ◮ Shift δ E r (due to δ X q ) − − − → Depth U 0 of nuclear mean-field model � δ m N � δ E r + 2 δ r 0 + δ U 0 1 ≈ − 3 ) ( R = r 0 A U 0 m N r 0 U 0 � �� � Independent of A ◮ Walecka model estimate of U 0 -term implies (Ignore δ r 0 ) � � δ X q δ E r ≈ 7 . 50 δ m S − 5 . 50 δ m V − δ m N 7 . 50 K q S − 5 . 50 K q V − K q ≡ N U 0 m S m V m N X q ◮ Uncertain microscopic interpretation of scalar S and vector V No first principles calculation of K q S , K q − → bosons V K q S , K q V chosen such that k q ∼ +10 MeV ◮ In PhysRevC.79.34302 ,

  11. Interpretation of Oklo within many-body chiral EFT model ◮ Plausible paradigm relating U 0 to QCD?

  12. Interpretation of Oklo within many-body chiral EFT model ◮ Plausible paradigm relating U 0 to QCD? “M¨ unchen” model Ingredients Nuclear property Large scalar & vector self-energies Spin-orbit interaction Chiral π N ∆-dynamics + Pauli-blocking Binding & saturation NuclPhysA.750.259 NuclPhysA.770.1

  13. Interpretation of Oklo within many-body chiral EFT model ◮ Plausible paradigm relating U 0 to QCD? “M¨ unchen” model ◮ Calculation of U for symmetric nuclear matter

  14. Interpretation of Oklo within many-body chiral EFT model ◮ Plausible paradigm relating U 0 to QCD? “M¨ unchen” model ◮ Calculation of U for symmetric nuclear matter Long range interactions In-medium χ PT to 3 loops (1 & 2 π exchange, 1 & 2 virtual ∆ excitation)

  15. Interpretation of Oklo within many-body chiral EFT model ◮ Plausible paradigm relating U 0 to QCD? “M¨ unchen” model ◮ Calculation of U for symmetric nuclear matter Long range interactions In-medium χ PT to 3 loops (1 & 2 π exchange, 1 & 2 virtual ∆ excitation) ∆(1232) degree of freedom Appropriate (∆ − N mass ≃ k Fermi ) Ensures model phenomenologically satisfactory NuclPhysA.750.259

  16. Interpretation of Oklo within many-body chiral EFT model ◮ Plausible paradigm relating U 0 to QCD? “M¨ unchen” model ◮ Calculation of U for symmetric nuclear matter Long range interactions In-medium χ PT to 3 loops (1 & 2 π exchange, 1 & 2 virtual ∆ excitation) ∆(1232) degree of freedom Appropriate (∆ − N mass ≃ k Fermi ) Ensures model phenomenologically satisfactory Short range interactions 2 contact-terms Strengths fitted directly to nuclear NuclPhysA.750.259 matter properties

  17. Sensitivity to quark mass: approximations & results Long & intermediate range interaction terms → ˜ U 0 = � U 0 i i � M π g A � 4 � ˜ � U 0 = π (9 + 6 u 2 ) tan − 1 u − 9 u k F + . . . ( u = M π ) m N 4 2 π F π � �� � Twice iterated 1 π -exchange (2 medium insertions) ◮ In terms of hadronic parameters P (i.e. M π , F π , g A , m N & ∆) �� � � P � � m q � δ ˜ δ ˜ U 0 = 1 U 0 U 0 i δ U 0 i δ P δ m q δ m q = U 0 U 0 δ m q U 0 U 0 i δ P P δ m q m q P , i � �� � � �� � = K q = K P U 0 i P ◮ Discard all but P = m π term: K q 2 ≫ other K q M π ≈ 1 P ’s � �� � Berengut et al. (2013) ◮ Result: δ ˜ U 0 = − 0 . 28 δ m q = ⇒ k q ∼ 10 MeV (!) U 0 m q Same as PhysRevC.79.034302 but with controlled approximations

  18. Sensitivity to quark mass: approximations & results Long & intermediate range interaction terms → ˜ U 0 = � U 0 i i � M π g A � 4 � ˜ � U 0 = π (9 + 6 u 2 ) tan − 1 u − 9 u k F + . . . ( u = M π ) m N 4 2 π F π � �� � Twice iterated 1 π -exchange (2 medium insertions) ◮ In terms of hadronic parameters P (i.e. M π , F π , g A , m N & ∆) �� � � P � � m q � δ ˜ δ ˜ U 0 = 1 U 0 U 0 i δ U 0 i δ P δ m q δ m q = U 0 U 0 δ m q U 0 U 0 i δ P P δ m q m q P , i � �� � � �� � = K q = K P U 0 i P ◮ Discard all but P = m π term: K q 2 ≫ other K q M π ≈ 1 P ’s � �� � Berengut et al. (2013) ◮ Result: δ ˜ U 0 = − 0 . 28 δ m q = ⇒ k q ∼ 10 MeV (!) U 0 m q Same as PhysRevC.79.034302 but with controlled approximations

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend