observables of the non equilibrium phase transition
play

Observables of the non-equilibrium phase transition Boris Tom a - PowerPoint PPT Presentation

Observables of the non-equilibrium phase transition Boris Tom a sik Univerzita Mateja Bela, Bansk a Bystrica, Slovakia and Cesk e vysok e u cen technick e, FNSPE, Praha, Czech Republic boris.tomasik@umb.sk CBM


  1. Observables of the non-equilibrium phase transition Boris Tom´ aˇ sik Univerzita Mateja Bela, Bansk´ a Bystrica, Slovakia and ˇ Cesk´ e vysok´ e uˇ cen´ ı technick´ e, FNSPE, Praha, Czech Republic boris.tomasik@umb.sk CBM Physics day, 16.9.2015 sik (UMB & ˇ Boris Tom´ aˇ CVUT) Non-equilibrium phase transition CBM Physics day, 16.9.2015 1 / 28

  2. The phase diagram of strongly interacting matter T sQGP 1 s t crossover o r d e r p h a s e t r a n s i t i o n HG μ sik (UMB & ˇ Boris Tom´ aˇ CVUT) Non-equilibrium phase transition CBM Physics day, 16.9.2015 2 / 28

  3. 1st order phase transition 2 phase coexistence for slow transitions P 1 spinodal fragmentation e for fast processes c P V a b d 0 1 2 3 4 V L V G V Spinodal fragmentation in liquid/gas nuclear phase transition P. Chomaz, M. Colonna, J. Randrup, Phys. Rept. 384 (2004) 263-440 sik (UMB & ˇ Boris Tom´ aˇ CVUT) Non-equilibrium phase transition CBM Physics day, 16.9.2015 3 / 28

  4. Size of the fragments the size decreases with expansion rate H � 1 / 3 � 5 γ R = ∆ E H 2 ∆ E is latent heat, H is Hubble constant, γ is surface tension I.N.Mishustin, Phys. Rev. Lett. 82 (1999) 4779 sik (UMB & ˇ Boris Tom´ aˇ CVUT) Non-equilibrium phase transition CBM Physics day, 16.9.2015 4 / 28

  5. Simulations J. Randrup, J. Steinheimer: PRL 109 212301, PRC 87 054903, PRC 89 034901 (with V. Koch) Equation of State is augmented by the surface term Enhancement of the baryon density fluctuations figure: J. Steinheimer, J. Randrup: PoS (CPOD 2013) 016 sik (UMB & ˇ Boris Tom´ aˇ CVUT) Non-equilibrium phase transition CBM Physics day, 16.9.2015 5 / 28

  6. N.B. fluctuations at high energies There is a commonly accepted paradigm, that the azimuthal anisotropies observed at RHIC and LHC are caused only by anisotropies in initial state [H. Niemi et al. , Phys. Rev. C 87 (2013) 054901] sik (UMB & ˇ Boris Tom´ aˇ CVUT) Non-equilibrium phase transition CBM Physics day, 16.9.2015 6 / 28

  7. Fluctuating initial conditions 100 P(v 2 / 〈 v 2 〉 ), P( ε 2 / 〈ε 2 〉 ) 20-25% ε 2 IP-Glasma v 2 IP-Glasma+MUSIC 10 v 2 ATLAS Use the fluctuations of v n ’s to 1 get the access to initial 0.1 p T > 0.5 GeV | η | < 2.5 0.01 conditions. 0 0.5 1 1.5 2 2.5 3 v 2 / 〈 v 2 〉 , ε 2 / 〈ε 2 〉 fluctuations of v n ’s seem to 100 20-25% ε 3 IP-Glasma P(v 3 / 〈 v 3 〉 ), P( ε 3 / 〈ε 3 〉 ) follow those of spatial v 3 IP-Glasma+MUSIC 10 v 3 ATLAS anisotropies ε n ’s 1 p T > 0.5 GeV 0.1 | η | < 2.5 0.01 0 0.5 1 1.5 2 2.5 3 v 3 / 〈 v 3 〉 , ε 3 / 〈ε 3 〉 100 20-25% P(v 4 / 〈 v 4 〉 ), P( ε 4 / 〈ε 4 〉 ) ε 4 IP-Glasma v 4 IP-Glasma+MUSIC 10 v 4 ATLAS [Ch. Gale et al.: 1 Phys. Rev. Lett. 110 (2013) 012302] 0.1 p T > 0.5 GeV | η | < 2.5 0.01 0 0.5 1 1.5 2 2.5 3 v 4 / 〈 v 4 〉 , ε 4 / 〈ε 4 〉 sik (UMB & ˇ Boris Tom´ aˇ CVUT) Non-equilibrium phase transition CBM Physics day, 16.9.2015 7 / 28

  8. Fragmentation (cavitation) due to bulk viscosity rate of energy density decrease with ζ/T 3 bulk viscosity u µ ∂ µ ε = ε + p − ζ∂ ρ u ρ ∂ µ u µ ε ε effective decrease of the pressure due to bulk viscosity T c T fragment size estimate in Bjorken scenario 24 ζ c L 2 = ε c ∂ µ u µ | τ = τ c G. Torrieri, B. Tom´ aˇ sik, I.N. Mishustin, Phys. Rev. C 77 (2008) 034903 sik (UMB & ˇ Boris Tom´ aˇ CVUT) Non-equilibrium phase transition CBM Physics day, 16.9.2015 8 / 28

  9. Rapidity correlations If the fireball fragments, hadrons will be correlated choose protons: heavy (less thermal smearing) and still abundant (good statistics) correlation functions in 3D rapidity differences: � � � y 12 = ln γ 12 + γ 12 − 1 p 1 · p 2 γ 12 = m 1 m 2 J. Randrup, Heavy Ion Physics 22 (2005) 69 sik (UMB & ˇ Boris Tom´ aˇ CVUT) Non-equilibrium phase transition CBM Physics day, 16.9.2015 9 / 28

  10. Rapidity difference correlation function for protons all hadrons emitted from |) 12 0.2 3D correlation C(|y droplets at FAIR/NICA expect 0.15 bigger droplets 0.1 lines color coding: FAIR/NICA, 0.05 RHIC 130, RHIC 130 no resonances 0 LHC 0 0.5 1 1.5 2 2.5 3 3.5 Relative rapidity |y | 12 Signal weaker if only a fraction of all hadrons from droplets here neglected Fermi-Dirac statistics and strong interaction: expect effect at 25 MeV (small relative rapidity) M. Schulc, B. Tom´ aˇ sik, Eur. Phys. J. A 45 (2010) 91 sik (UMB & ˇ Boris Tom´ aˇ CVUT) Non-equilibrium phase transition CBM Physics day, 16.9.2015 10 / 28

  11. Comparison of rapidity distribution If there are fluctuations, each event (from the same centrality class) will have a different rapidity distribution. Spinodal fragmentation will lead to droplets which will emit hadrons. How do we recognise a non-statistical difference between two empirical distributions? sik (UMB & ˇ Boris Tom´ aˇ CVUT) Non-equilibrium phase transition CBM Physics day, 16.9.2015 11 / 28

  12. Are these realisations of the same distribution? 1.4 1.2 x x x x x x x x 1 Entries Entries 400 400 Entries Entries 400 400 Entries Entries 400 400 Mean Mean -0.0133 -0.0133 1.2 Mean Mean 0.1612 0.1612 Mean Mean -0.0612 -0.0612 RMS RMS 0.7154 0.7154 1 x RMS RMS 0.7127 0.7127 RMS RMS 0.7363 0.7363 0.8 1 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 0 0 0 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 1.2 1.2 x x x x x x 1 Entries Entries 400 400 x Entries Entries 400 400 x Entries Entries 400 400 x Mean Mean -0.08795 -0.08795 Mean Mean -0.05361 -0.05361 Mean Mean 0.09686 0.09686 1 1 RMS RMS 0.729 0.729 RMS RMS 0.7592 0.7592 RMS RMS 0.7891 0.7891 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 0 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 sik (UMB & ˇ Boris Tom´ aˇ CVUT) Non-equilibrium phase transition CBM Physics day, 16.9.2015 12 / 28

  13. The Kolmogorov-Smirnov test Are two empirical distributions generated by the same probability density? Construct distance D between two emipirical distributions (event rapidity distributions) for all event pairs Take away the effect of multiplicity � n 1 n 2 d = D n 1 + n 2 Use the probability Q ( d ): probability, that randomly selected pair of events generated by the same distribution will have their distance bigger than d . Events from the same distribution will lead to uniform Q -distribution. Non-statistically different events will show a peak at small Q . (There are formulas to calculate Q ( d ).) sik (UMB & ˇ Boris Tom´ aˇ CVUT) Non-equilibrium phase transition CBM Physics day, 16.9.2015 13 / 28

  14. Convolution of droplets which emit pions uniformly distributed Gaussian sources with the width 0.707 always the same total multiplicity 90000 80000 (droplets, multiplicity/droplet) (16,128) 70000 (32,64) number of pairs 60000 (64,32) (128,16) 50000 (256,8) 40000 (512,4) 30000 20000 10000 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Q sik (UMB & ˇ Boris Tom´ aˇ CVUT) Non-equilibrium phase transition CBM Physics day, 16.9.2015 14 / 28

  15. Application to Monte-Carlo-generated data 16000 DRAGON: 20000 hadron s Charged hadron s h 3 h 3 15000 R = 112 Entrie s Entrie s 99992 99992 1 8 000 Mean Mean 0.40 8 7 0.40 8 7 R = 6 3 .5 h 3 h 3 Num b er of p air s RM S RM S 0. 3 0 33 0. 3 0 33 num b er of p air s 14000 Entrie s Entrie s 99992 99992 Blast-wave model R = 10 16000 Mean Mean 0.445 0.445 R = 5.0 1 3 000 RM S RM S 0. 3 001 0. 3 001 R = 2.4 14000 R = 1. 3 12000 with possible droplet 12000 11000 10000 production 10000 9000 8 000 8 000 0 0.1 0.2 0. 3 0.4 0.5 0.6 0.7 0. 8 0.9 1 0 0.1 0.2 0. 3 0.4 0.5 0.6 0.7 0. 8 0.9 1 lines color coding: Q Q 11500 RHIC with droplets, 11500 - + π π h 3 h 3 R = 17.4 11000 Entrie s Entrie s 99992 99992 R = 14.6 h 3 h 3 RHIC no droplets, num b er of p air s Mean Mean 0.4 8 92 0.4 8 92 Entrie s Entrie s 99992 99992 num b er of p air s 11000 RM S RM S R = 1.5 0.2947 0.2947 Mean Mean 0.4 8 97 0.4 8 97 R = - 1.1 RM S RM S 0.29 33 0.29 33 R = 0.6 8 R = - 0.1 8 10500 FAIR no droplets 10500 10000 10000 9500 9500 0 0.1 0.2 0. 3 0.4 0.5 0.6 0.7 0. 8 0.9 1 0 0.1 0.2 0. 3 0.4 0.5 0.6 0.7 0. 8 0.9 1 Q Q 12500 14000 12000 + - π π p and p h 3 h 3 1 3 000 h 3 h 3 R = 41 11500 R = - 0.22 Entrie s Entrie s 99992 99992 Entrie s Entrie s 99992 99992 Mean Mean 0.4646 0.4646 num b er of p air s num b er of p air s Mean Mean R = - 2.1 0.512 3 0.512 3 R = 6. 8 RM S RM S 0.2972 0.2972 11000 RM S RM S 0.2944 0.2944 12000 R = - 2.5 R = 5.6 10500 11000 10000 9500 10000 9000 9000 8 500 0 0.1 0.2 0. 3 0.4 0.5 0.6 0.7 0. 8 0.9 1 0 0.1 0.2 0. 3 0.4 0.5 0.6 0.7 0. 8 0.9 1 Q Q sik (UMB & ˇ Boris Tom´ aˇ CVUT) Non-equilibrium phase transition CBM Physics day, 16.9.2015 15 / 28

  16. Kolmogorov-Smirnov test is a powerful tool to check if there are droplets/clusters observed in the observed events. I. Melo et al. , Phys. Rev. C. 80 (2009) 024904 sik (UMB & ˇ Boris Tom´ aˇ CVUT) Non-equilibrium phase transition CBM Physics day, 16.9.2015 16 / 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend