nsf pire summer school geometrically linear theory for
play

NSF-PIRE Summer School Geometrically linear theory for shape memory - PowerPoint PPT Presentation

NSF-PIRE Summer School Geometrically linear theory for shape memory alloys: the effect of interfacial energy Felix Otto Max Planck Institute for Mathematics in the Sciences Leipzig, Germany 1 Goal of mini-course Introduction to 3 recent


  1. NSF-PIRE Summer School Geometrically linear theory for shape memory alloys: the effect of interfacial energy Felix Otto Max Planck Institute for Mathematics in the Sciences Leipzig, Germany 1

  2. Goal of mini-course Introduction to 3 recent works on microstructure or absence thereof in cubic-to-tetragonal phase transformation Approximate rigidity of twins, periodic case Capella, O.: A rigidity result for a perturbation of the geomet- rically linear three-well problem, CPAM 62, 2009 Approximate rigidity of twins, local case 2 Capella, O.: A quantitative rigidity result for the cubic-to-tetragonal

  3. phase transition in the geometrically linear theory with interfa- cial energy, Proc. Roy. Soc. Edinburgh A, to appear Optimal microstructure of Martensitic inclusions Kn¨ upfer, Kohn, O.: Nucleation barriers for the cubic-to-tetragonal phase transformation, CPAM, to appear See www.mis.mpg.de for copies (Otto, Publications, Shape-Memory Alloys)

  4. Structure of mini-course • Chap 1. Kinematics • Chap 2. 2-d models square-to-rectangular, hexagonal-to-rhombic • Chap 3. 3-d models cubic-to-tetragonal, [cubic-to-orthorombic] 3

  5. Structure of Chapter 1 on kinematics 1.1 Strain a geometrically linear description 1.2 Rigidity of skew symmetric gradients 1.3 Twins and rank-one connections 1.4 Triple junctions are rare 1.5 Quadruple junctions are more generic 4

  6. Structure of Chapter 2 on 2-d models Square-to-rectangular phase transformation 2.1 Derivation of the linearized two-well problem 2.2 Rigidity of twins 2.3 Elastic and interfacial energies 2.4 Derivation of a reduced model for twinned-Martensite to Austenite interface 2.5 Self-consistency of reduced model, lower bounds by interpolation, 5 upper bounds by construction

  7. Structure of Chapter 2 on 2-d models, cont Hexagonal-to-rhombic phase transformation 2.6 Derivation of the linearized three-well problem 2.7 Twins and sextuple junctions 2.8 Loss of rigidity by convex integration 6

  8. 2.4 Derivation of a reduced model for the twinned-Martensite to Austenite interface Phase indicator function: χ ∈ {− 1 , 0 , 1 } , χ = χ ( x 1 , x 2 ) Displacement field: u = ( u 1 , u 2 ), u = u ( x 1 , x 2 ) Interfacial energy : � η length of interface between { χ = 1 } and { χ = − 1 } + length of interface between { χ = 1 } and { χ = 0 } � + length of interface between { χ = − 1 } and { χ = 0 } 2 � � �   �  0 χ � � 7 1 2 ( ∇ + ∇ t ) u − Elastic energy : dx 1 dx 2 � � �  � χ 0 � � � �

  9. 2.4 Derivation of a reduced model for the twinned-Martensite to Austenite interface Simplification 1 Impose position of twinned-Martensite to Austenite interface Simplification 2 Impose shear direction Simplification 3 Anisotropic rescaling and limit 8

  10. Simplification 1): Impose position of twinned-Martensite to Austenite interface Position of interface { x 2 = 0 } :   ∈ {− 1 , 1 } for x 1 > 0   χ = 0 for x 1 < 0   Nondimensionalize length by restriction to x 1 ∈ ( − 1 , 1), regime of interest η ≪ 1 Impose (artificial) L -periodicity in x 2 � � 9 � 1 Interfacial energy η (0 , 1) × [0 ,L ) |∇ χ | + L 2

  11. Simplification 2): Impose shear direction � 0 � Favor twin normal n = 1 � 2 � by imposing shear direction a = . i. e. 0 u 2 ≡ 0 but u 1 = u 1 ( x 1 , x 2 ) 1    ∂ 1 u 1 2 ∂ 2 u 1 Strain 1 2 ( ∇ + ∇ t ) u = 1  2 ∂ 2 u 1 0 � 1 � L 0 ( ∂ 1 u 1 ) 2 + 2( 1 2 ∂ 2 u 1 − χ ) 2 dx 2 dx 1 Elastic energy − 1 10

  12. Simplification 3): Anisotropic rescaling and limit 1 � η � (0 , 1) × [0 ,L ) |∇ χ | 2 L ( − 1 , 1) × (0 ,L ) ( ∂ 1 u 1 ) 2 + 2( 1 � � 2 ∂ 2 u 1 − χ ) 2 dx + Ansatz for rescaling x 2 = η α ˆ ⇒ ∂ 2 = η − α ˆ L = η α ˆ x 2 = ∂ 2 . L, u 1 = 2 η α ˆ ∂ 1 u 1 = 2 η α ∂ 1 ˆ ⇒ ∂ 2 u 1 = 2ˆ u 1 = ∂ 2 ˆ u 1 , u 1 . 1 ∂ 1 χ � η � � � (0 , 1) × [0 ,L ) | | 2 η − α ˆ ˆ L ∂ 2 χ 11 u 1 ) 2 + 2(ˆ � � ( − 1 , 1) × (0 ,L ) 4 η 2 α ( ∂ 1 ˆ u 1 − χ ) 2 d ˆ + ∂ 2 ˆ x

  13. Seek nontrivial limit: elastic part u 1 ) 2 + 2(ˆ 4 η 2 α ( ∂ 1 ˆ u 1 − χ ) 2 Elastic energy density: ∂ 2 ˆ Penalization of ˆ ∂ 2 ˆ u 1 − χ ≫ penalization of ∂ 1 ˆ u 1 Neclegting ∂ 1 ˆ u 1 no option — otherwise no elastic effect Hence constraint ˆ ∂ 2 ˆ u 1 − χ = 0 in limit. 12

  14. Seek nontrivial limit: interfacial part ∂ 1 χ η � � Interfacial energy density: 2 | | η − α ˆ ∂ 2 χ Penalization of ˆ penalization of ∂ 1 χ ∂ 2 χ ≫ Constraint ˆ ∂ 2 χ = 0 no option — otherwise no twin Hence have to neglect penalization of ∂ 1 χ 13 η 1 − α 2 | ˆ Interfacial energy density ∂ 2 χ | in limit.

  15. Seek nontrivial limit: choice of α u 1 ) 2 + η 1 − α Total energy density 4 η 2 α ( ∂ 1 ˆ 2 | ˆ ∂ 2 χ | For balance need η 2 α ∼ η 1 − α ⇒ α = 1 3 2 1 3 1 L ˆ Rescaling of energy density: L E = η E ˆ 2 2 Prediction from 1 3 1 L ˆ L E = η E : energy density ∼ η 3 ˆ 1 1 Prediction from x 2 = η 3 ˆ x 2 : twin width ∼ η 3 14 ... provided limit model makes sense for ˆ L ≫ 1

  16. Limit model is singular � 1 � ˆ � 1 L � x 2 dx 1 + 1 u 1 ) 2 d ˆ L ) | ˆ Minimize 4 0 ( ∂ 1 ˆ ∂ 2 χ | dx 1 subject to 2 [0 , ˆ − 1 0 � � ∈ {− 1 , 1 } for x 1 > 0 ˆ ∂ 2 ˆ u 1 = χ . = 0 for x 1 < 0 � 1 | ˆ ∂ 2 χ | just counts transitions between 1 and -1 2 [0 , ˆ L ) Infinite twin refinement: Elastic energy = ⇒ ˆ u 1 = const = 0 for x 1 < 0 = u 1 ( x 1 , · ) → 0 ˆ as x 1 ↓ 0 ⇒ = ⇒ χ ( x 1 , · ) ⇀ 0 as x 1 ↓ 0 � L ) | ˆ = ∂ 2 χ ( x 1 , · ) | ↑ ∞ as x 1 ↓ 0 ⇒ [0 , ˆ � 1 � L ) | ˆ Interfacial energy = ∂ 2 χ ( x 1 , · ) | dx 1 < ∞ ⇒ 15 [0 , ˆ 0 ... does limit model have finite energy?

  17. 2.5 Self consistency of reduced model, upper bounds by construction, lower bounds by interpolation Proposition 2 [Kohn, M¨ uller] Functional: � 1 � L � 1 � 0 ( ∂ 1 u 1 ) 2 dx 2 dx 1 + 1 E = 4 [0 ,L ) | ∂ 2 χ | dx 1 . 2 − 1 0 Admissible configurations: u 1 , χ L -periodic in x 2 with � � ∈ {− 1 , 1 } for x 1 > 0 ∂ 2 u 1 = χ . = 0 for x 1 < 0 Then ∃ universal C < ∞ such that i) upper bound ∀ L ∃ ( u 1 , χ ) E ≤ CL, 16 E ≥ 1 ii) lower bound ∀ L, ( u 1 , χ ) C L.

  18. Proof of Proposition 2 i) (Construction) W. l. o. g. L = 1. Step 1 Building block for branched structure on (0 , 1) × (0 , 1) Step 2 Rescaling � construction on (0 , H ) × (0 , 1) Step 3 Concatenation � construction on (0 , 1) × (0 , 1) 17

  19. Proof of Proposition 2 i) (lower bound) Lemma 7 ∃ universal C < ∞ ∀ L -periodic u 1 ( x 2 ) , χ ( x 2 ) related by ∂ 2 u 1 = χ with � 1 � 2 � L �� L 3 �� L 3 0 χ 2 dx 1 ≤ C 0 u 2 0 | ∂ 2 χ | dx 2 sup 1 dx 2 | χ | . x 2 1 1 1 � χ � L 2 ≤ C ( d ) �|∇| − 1 χ � 3 3 3 Holds in any d as L 2 �∇ χ � L 1 � χ � L ∞ 2 1 3 ≤ C ( d ) �|∇| − 1 χ � 3 3 Simpler version of � χ � L 2 �∇ χ � 4 L 1 L 18 (Cohen-Dahmen-Daubechies-Devore)

  20. 2.8 Loss of rigidity by convex integration Proposition 3 [M¨ uller, Sver´ ak] ∀ M s. t. 1 2 ( M + M t ) ∈ int conv { E 0 , E 1 , E 2 } ∀ Ω ⊂ R 2 open, bdd. ∃ u : R 2 → R 2 with ∇ u ∈ L 2 loc in R 2 − ¯ ∇ u = M Ω , 1 2( ∇ + ∇ t ) u ∈ { E 0 , E 1 , E 2 } a. e. on Ω . 19

  21. Step 1: Conti’s construction = Lemma 5 Consider for λ = 1 4 : � � � � � � 0 1 0 − 1 1 − λ M 0 = 1 1 1 , M 1 = , M 2 = , 1 − λ 2 λ 1 − λ 0 0 1 0 − 1 λ � � � � − 1 − λ 0 0 1 , M 4 = 1 , Ω = ( − 1 , 1) 2 . M 3 = 1 − λ 2 λ λ 1 − 1 0 Then ∃ Ω 0 , · · · Ω 4 ⊂ Ω finite � of convex, open sets ∃ u : R 2 → R 2 Lipschitz s. t. in R 2 − ¯ = 0 Ω , ∇ u = in Ω i , ∇ u M i 1 20 | Ω 0 | = 2 λ | Ω | .

  22. Step 2: Deformation and rotation of Conti’s construction ∀ M, M 0 , M 1 s. t. M = 1 4 M 0 + 3 4 M 1 with for some a ∈ R 2 , n ∈ S 1 , a · n = 0 M 1 − M 0 = a ⊗ n ∃ ˜ M 1 , · · · , ˜ ∀ ǫ > 0 M 4 s. t. where M 2 := 1 5 M 0 + 4 | ˜ M 1 − M 1 | , | ˜ M 2 / 3 − M 2 | , | ˜ M 4 − M | < ǫ, 5 M 1 . Ω 4 ⊂ Ω finite � of convex, open sets ∃ Ω ⊂ R 2 open, bdd. , Ω 1 , · · · , ˜ ˜ ∃ u : R 2 → R 2 Lipschitz with in R 2 − ¯ ∇ u = M Ω , ˜ in ˜ ∇ u = M i Ω i , in Ω − (˜ Ω 1 ∪ · · · ∪ ˜ ∇ u = M 0 Ω 4 ) , 21 7 | ˜ Ω 1 ∪ · · · ∪ ˜ Ω 4 | 8 | Ω | . ≤

  23. Step 3: Application to hexagonal-to-rhombic ∀ M s. t. 1 2 ( M + M t ) ∈ int conv { E 0 , E 1 , E 2 } M 4 s. t. 1 M t ∃ ˜ M 1 , · · · , ˜ 2 ( ˜ M i + ˜ i ) ∈ int conv { E 0 , E 1 , E 2 } Ω 4 ⊂ Ω finite � of convex, open sets ∃ Ω ⊂ R 2 open, bdd. , Ω 1 , · · · , ˜ ˜ ∃ u : R 2 → R 2 Lipschitz with in R 2 − ¯ = Ω , ∇ u M ˜ in ˜ = Ω i , ∇ u M i 1 2 ( ∇ + ∇ t ) u in Ω − (˜ Ω 1 ∪ · · · ∪ ˜ ∈ { E 0 , E 1 , E 2 } Ω 4 ) , 7 | ˜ Ω 1 ∪ · · · ∪ ˜ Ω 4 | ≤ 8 | Ω | . 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend