novel method for estimating isotope incorporation using
play

Novel method for estimating isotope incorporation using the - PowerPoint PPT Presentation

Novel method for estimating isotope incorporation using the half-decimal place rule Ingo Fetzer Department of Environmental Microbiology userR Conference 2009, Rennes Problem 1.2e+7 100% 100% 0% 0% 50% 1.0e+7 Intensity 8.0e+6


  1. Novel method for estimating isotope incorporation using the ‘half-decimal place rule‘ Ingo Fetzer Department of Environmental Microbiology userR Conference 2009, Rennes

  2. Problem 1.2e+7 100% 100% 0% 0% 50% 1.0e+7 Intensity 8.0e+6 6.0e+6 4.0e+6 2.0e+6 0.0 835 840 845 850 855 860 865 870 875 880 mass � Substrate fluxes in Procaryotes � Function Activity Identitiy � Interactions: Competition Mutualism Page 2

  3. Goal Develop an algorithm for estimating 13 C incorporation by using ‘half decimal place rule’ Page 3

  4. ‘Half-decimal place rule’ (HDPR) Mann (1995) 100% Decimal places 0% m/z tryptic peptides Heliobacter pylori [Da] Schmidt et al 2003 Page 4

  5. Outline 1. Peptide mass calculation for 12 C and 13 C 2. Estimation of 12 C and 13 C slopes (HDPR) 3. Estimation of relative 13 C incorporation rates (of user data) implemented in ‘R‘ (R-project.org) Page 5

  6. Flowchart Script 1 Peptide database criterions Peptide sequences AA molecular formula Atomic weights Peptide sequence masses Page 6

  7. Peptide mass calculation for 12 C and 13 C Virtual digestion with MS-Digest dataset M. tuberculosis H37Rv amino acid sequences length 2 – 40 315,579 peptide fragments ChemScore ≥ 10 Missing cleavage = 0 Modifications = Null Mol. weight ≤ 5000 Da 90,637 peptide sequences Sanger Institute (ftp://ftp.sanger.ac.uk/pub/tb/sequences/TB.pep) Page 7

  8. Peptide mass calculation for 12 C and 13 C Page 8

  9. Peptide mass calculation for 12 C and 13 C Script 1: 1. Reduction of dataset (ChemScore, Modification etc.) 315,579 90,637 2 a. Peptide mass calculation Sequence + Molecular Sum of formula of in DB C, H, N, O for AA each sequence C 7 H 20 N 3 O 6 G=C 2 H 6 NO 2 A=C 3 H 8 NO 2 GAG Calculation of percentage 13 C Why? incorporation Page 9

  10. Peptide mass calculation for 12 C and 13 C 2b. Peptide mass calculation Sum of + Atomic weights Molecular weights of C, H, N, O of each sequences 12 C = 12.000000 Da sequence 13 C = 13.003355 Da (with decimal N = 14.003074 Da C 7 H 20 N 3 O 6 residuals) O = 15.994915 Da H = 1.007825 Da 12 C=242.135212 Da 13 C=249.158697 Da Page 10

  11. Peptide mass calculation for 12 C and 13 C 2a. Peptide mass calculation Atomic weights Count sum of Molecular + weights of C, H, N, O, S for 12 C = 12.000000 Da sequences each sequence 13 C = 13,003355 Da Molecular Masses of 12 C (with decimal N = 14.003074 Da O = 15.994915 Da residuals) and 13 C peptides H = 1.007825 Da S = 31.972071 Da H H O H H O O O C + 1 R C 2 R C C C C 1 R + C C H 3 O + OH OH + OH NH 3 N + NH 3 NH 3 + 2 R H M W (H 3 O + ) = 19.01839 Da Page 11

  12. Flowchart Script 2 Peptide sequence masses Transformation Transf. Peptide sequence masses k-means clustering Groupings Slope 0%/100% 13 C Linear fitting Transf. Decimal m/z – DR plot Residuals Page 12

  13. Estimation of 12 C and 13 C slopes Script 2: 1.0 0.8 Decimal residuals 0.6 m/z Temp = m/z - 1800 * DR 0.4 0.2 0.0 1000 2000 3000 4000 5000 6000 m/z Page 13

  14. Estimation of 12 C and 13 C slopes 1.0 Hartigan & Wong (1979) Decimal residuals 0.8 0.6 0.4 0.2 0.0 0 1000 2000 3000 4000 5000 6000 m/z Temp k-means clustering using kmeans() Page 14

  15. Estimation of 12 C and 13 C slopes 1.0 Hartigan & Add 0 1 2 3 Wong (1979) Decimal residuals 0.8 0.6 0.4 0.2 0.0 0 1000 2000 3000 4000 5000 6000 m/z Temp k-means clustering using kmeans() Page 15

  16. Estimation of 12 C and 13 C slopes 3.5 100% slope = 0.000633 0% slope = 0.000514 3.0 Decimal residuals 2.5 100% 2.0 1.5 0% 1.0 lm() function 0.5 Stats package 0.0 0 1000 2000 3000 4000 5000 m/z Page 16

  17. Flowchart Script 3 User data k-means clustering Robust Slope 0% + 100% 13 C linear fitting Slope user data reference calculation Estimation of relative 13 C incorporation rates Page 17

  18. Estimation of relative 13 C incorporation rates Script 3: 3.5 100% slope = 0.000633 0% slope = 0.000514 100% 3.0 Decimal residuals = ∗ DR b m/z (with a=0) 2.5 2.0 ‘outliers‘ 1.5 0% 1.0 Influence on slope estimation 0.5 0.0 0 1000 2000 3000 4000 5000 m/z Page 18

  19. Estimation of relative 13 C incorporation rates Linear fitting: 3.5 minimizing the error sum of the squares ∑ = − ∗ 2 min ( ) 3.0 SSE DR b m/z Decimal residuals 2.5 2.0 1.5 1.0 0.5 Breakdown point value = 0 0.0 0 1000 2000 3000 4000 5000 m/z Page 19

  20. Estimation of relative 13 C incorporation rates Robust linear model (Huber 1973) 3.5 M-estimator type Iterative re-weighted least squares (IWLS; 3.0 robust linear Decimal residuals Huber 1981, Hampel et al 1986) fitting 2.5 2.0 1.5 1.0 Breakdown point value set = 0.5 0.5 >50% of datapoints must change 0.0 0 1000 2000 3000 4000 5000 m/z rlm() function MASS package (Venable & Ripley 2002) Page 20

  21. Estimation of relative 13 C incorporation rates 3.5 100% slope = 0.000633 0% slope = 0.000514 100% 3.0 Decimal residuals = ∗ DR b m/z (with a=0) Your incorporation rate 2.5 is 98.3% 2.0 1.5 0% 1.0 − b b 13 = ∗ % 100 12 user C C 0.5 User − b b 13 12 C C 0.0 0 1000 2000 3000 4000 5000 m/z Page 21

  22. User data input R + Script 3 Page 22

  23. User data output R + Script 3 Page 23

  24. Sensitivity of Method Dataset Pseudomonas putida 1. Calculated 50% and 100% 13 C incorporation 2. Randomly sampled 100 times each 10-100 (steps by 10), 150, 200, 300, 500, 1000 sequences (0%,50% and 100%) 3. Statistics on estimated incorporation rate for 0%, 50% and 100% Page 24

  25. Sensitivity of Method 150 100% 140 ~100 samples 130 120 110 100 90 80 70 Incorporation [%] 60 50 100 50% 90 80 70 60 50 40 30 20 10 0 50 0% 40 30 20 10 0 -10 -20 -30 -40 -50 10 50 100 150 200 300 500 1000 Number of peptides Page 25

  26. Conclusion 1. ‚Half-decimal place rule‘ useful for the estimation of 13 C incorporation rates 2. Robust linear models better suited for fitting of highly variable user data than MinSSE fitting http://s3.amazonaws.com/readers/2008/08/14/draddalybig_1.jpg 3. >100 measurements needed for prescision <5% incorporation estimation Page 26

  27. Outlook 1. Application of HPDR on DNA 2. Backcalculation to 12 C-peaks function identification 3. Include N-isotope incoorporation http://www.sharp.co.jp/plasmacluster-tech/en/release/images/041117_3.gif Page 27

  28. Acknowledgement Nico Jemlich (UFZ) Carsten Vogt (UFZ) Martin von Bergen (UFZ) Hans-Hermann Richnow (UFZ) http://cache.gawker.com/assets/images/gizmodo/2009/01/bactsunsuet_01.jpg Hauke Harms (UFZ) Frank Schmidt (Uni Greifwald) Jens Mattow (MPI Berlin) Bernd Thiede (Uni Oslo) R development team Page 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend