non uniform degradation behavior across device width in
play

Non-Uniform Degradation Behavior Across Device Width in RF Power - PowerPoint PPT Presentation

Non-Uniform Degradation Behavior Across Device Width in RF Power GaAs PHEMTs A. A. Villanueva 1 , J. A. del Alamo 1 , T. Hisaka 2 , K. Hayashi 2 and M. Somerville 3 1 Massachusetts Institute of Technology 2 Mitsubishi Electric 3 Olin College of


  1. Non-Uniform Degradation Behavior Across Device Width in RF Power GaAs PHEMTs A. A. Villanueva 1 , J. A. del Alamo 1 , T. Hisaka 2 , K. Hayashi 2 and M. Somerville 3 1 Massachusetts Institute of Technology 2 Mitsubishi Electric 3 Olin College of Engineering Sponsor: Mitsubishi Electric

  2. Motivation • Electrical degradation is serious concern in RF power GaAs PHEMTs – Under stressing: R D � and I max � → P out � • Degradation mechanisms identified [1]- [3], but no studies of uniformity • This study : investigate degradation across device width G S D W [1] del Alamo et al (IEDM 2004) [2] Meneghesso et al (1996) [3] Hisaka et al (GaAs IC 2003)

  3. Outline • Introduction • Experimental • PHEMT Degradation – Light Emission • TLM Degradation – Light Emission – Materials Analysis • Conclusions

  4. Introduction Stressing: I D = 400 mA/mm, step V DGo +V T . In air @ 300 K. Drain Source Gate 1.10 7.4 I max 7.2 R D /R D (0), I max /I max (0) ohmics 1.05 n + GaAs 7.0 cap V DGo +V T [V] V DGo +V T n - GaAs 6.8 etch-stop 1.00 AlGaAs supply 6.6 channel InGaAs 6.4 R D 0.95 supply AlGaAs 6.2 GaAs buffer 0.90 6.0 0 100 200 300 400 500 600 700 time [min] With step-stress : • Experimental RF power PHEMTs • R D � • L g = 0.25 μ m, W g = 50 μ m f t ~ 40-50 GHz, BV DG,off ~ 12-15 V • I max � (from V T � )

  5. Light Emission & Degradation • R D degradation due to G S D surface corrosion [3], high E involved h ν h ν • High E � impact ionization (II) � - + recombination � light + + - emission - - • Light-emission picture: spatial view of II, E [3] Hisaka et al (GaAs IC 2003)

  6. Light-emission: Experimental camera • Astronomical-grade CCD sensor microscope • Stressing: constant V GS & constant V DS probes – V DS stepped DUT • Photographs taken: 8.2 8.0 – at frequent intervals V GS =0.3 V 7.8 – at fixed (low) value of 7.6 V DS [V] 7.4 V DS 7.2 7.0 6.8 6.6 6.4 0 100 200 300 400 500 600 700 800 900 time [min]

  7. Light-Emission vs. Stressing (1) V GS =0.3 V • V DS � → I h ν � 5 x 10 8.2 V DS 7.8 V DS [V] 7.4 • For constant V DS , 7.0 I h ν constant, but 6.6 eventually � 8 I hv / I D [a.u.] 6 � R D � → V DGo � I h ν /I D 4 2 0 0 0 200 200 400 400 600 600 800 800 time [min]

  8. Light-Emission vs. Stressing (1) V GS =0.3 V • V DS � → I h ν � 5 x 10 8.2 V DS 7.8 V DS [V] 7.4 • For constant V DS , 7.0 I h ν constant, but 6.6 eventually � 8 I hv / I D [a.u.] 6 � R D � → V DGo � I h ν /I D 4 2 0 0 0 200 200 400 400 600 600 800 800 time [min]

  9. Light-Emission vs. Stressing (2) V GS = 0.3 V S D V DS = 6.6 V W=50 µm 45 µm 30 µm 45 µ m t = 0 min 218 min 428 min 638 min 849 min • Initially, light concentrates in center ~30 µm of width • With stressing: (1) light spreads out along width (2) weakens in intensity

  10. Light Emission vs. Width V GS = 0.3 V V GS = 0.3 V light from source side V DS = 6.6 V V DS = 6.6 V 14 6 t = 428 min 12 5 10 i hv / I D [a.u.] 4 I h ν / I D [a.u.] I hv / I D [a.u.] I hv / I D [a.u.] 8 t =849 min 3 6 2 4 t = 0 min 1 2 0 0 0 10 20 30 40 50 60 0 200 400 600 800 width [ μ m] width (um) time [min] • 1 st half: light spreads out → I hv � • 2 nd half: intensity decreases → I hv �

  11. Light Emission During Stressing device width 5 x 10 8.2 160 t = 639 min, V DS = 7.8 V 7.8 V DS [V] 140 7.4 120 7.0 t = 428 min, V DS = 7.4 V i hv / I D [a.u.] I hv / I D [a.u.] 100 6.6 8 80 I hv / I D [a.u.] 6 60 t = 218 min, V DS = 7.0 V 4 40 2 t = 0 min, V DS = 6.6 V 20 0 0 0 0 200 200 400 400 600 600 800 800 0 10 20 30 40 50 60 time [min] width [ μ m] width [um] • During stressing, at high bias: • early stages: degradation peaks in center • advanced stages: degradation peaks at edges

  12. Light-Emission of TLMs (1) 5 x 10 TLM: same structure as 6.00 V D PHEMT, but no gate 5.75 V D [V] 5.50 h ν 5.25 h ν 5.00 3 I hv / I D [a.u.] - + 2 - + + - - I h ν / I D 1 0 0 0 50 50 100 100 150 150 200 200 time [min] • V D � → I hv � • Constant V D → I hv � � R � → II �

  13. Light Emission of TLMs (2) V D = 5.0 V 5.0 V 5.25 V 5.50 V 5.75 V 6.0 V • Light initially concentrated in center • With stressing: W=100 µm 90 µm 55 µm – Light spreads out over width of TLM – I h ν � (for constant voltage) t = 0 min 67 min 100 min 133 min 167 min 201 min (Similar to PHEMT light emission behavior)

  14. Light Emission vs. Width (TLMs) device width 3.0 t = 0 min, V D = 5 V 2.5 2.0 i hv / I D [a.u.] I hv / I D [a.u.] t = 100 min, V D = 5.25 V 1.5 1.0 t = 201 min, V D = 6 V 0.5 0 0 20 40 60 80 100 width ( μ m) width [ μ m] • During stressing, at high bias, light “peaks” at edges → similar behavior in PHEMTs

  15. Origin of Non-Uniform II 3 possible causes for non-uniform II across device width: •Non-uniform I D •Non-uniform T •Non-uniform E-field

  16. Non-Uniform Drain Current ? G • Non-uniform I D S D – but II ∝ I D , so I D requires edges be “shut off”

  17. Non-Uniform Temperature? G • Non-uniform T S D – but edges should be cooler → more II

  18. Non-Uniform Electric Field? G • Non-uniform E-field S D – II ∝ exp(-1/E), small Δ E → large Δ II – from non-uniform recess

  19. Recess Non-Uniformity (TLMs) L=2.4 µm x y narrower wider W = 60 μ m Examined top view of entire recess area � recess is shorter in the center

  20. Recess vs. Width (TLMs) W = 60 µm • Nominal recess: 0.7 µm 1.0 • Actual recess varies: 0.9 – Center: ~0.6-0.7 µm ] length [um 0.8 – Edges: ~0.8-0.9 µm 0.7 0.6 AFM 0.5 0 10 20 30 40 50 60 width [ μ m] x [um] In center: electric field � → II � → degradation � � Same phenomenon likely happening in PHEMTs

  21. Conclusions • Non-uniform recess geometry � non-uniform E • Areas of higher E � areas more susceptible to degradation • To improve long-term device reliability: must identify & minimize non-uniformities in device geometry

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend