ninomiya victoir scheme strong convergence antithetic
play

Ninomiya-Victoir scheme: strong convergence, antithetic version and - PowerPoint PPT Presentation

Ninomiya-Victoir scheme: strong convergence, antithetic version and application to multilevel estimators CERMICS Ecole des Ponts ParisTech project team ENPC-INRIA-UPEM Mathrisk April 18, 2016 Joint work with Benjamin Jourdain and Emmanuelle


  1. Ninomiya-Victoir scheme: strong convergence, antithetic version and application to multilevel estimators CERMICS ´ Ecole des Ponts ParisTech project team ENPC-INRIA-UPEM Mathrisk April 18, 2016 Joint work with Benjamin Jourdain and Emmanuelle Cl´ ement

  2. Outline Introduction 1 Monte Carlo Methods 2 The Standard Monte Carlo Method The Multilevel Monte Carlo Numerical Schemes 3 The Ninomiya-Victoir Scheme An antithetic version of the Ninomiya-Victoir scheme Application to the Heston Model 4 The Heston model The Ninomiya-Victoir scheme in the Heston model

  3. Goal We are interested in the computation, by Monte Carlo methods, of the expectation Y = E [ f ( X T )], where X = ( X t ) t ∈ [0 , T ] is the solution to a multidimensional stochastic differential equation (SDE) and � f ( X T ) 2 � f : R n �→ R a given function such that E < + ∞ . We will focus on minimizing the computational complexity subject to a given target error ǫ ∈ R ∗ + . To measure the accuracy of an estimator ˆ Y , we will consider the root mean squared error: �� 2 � � � � 1 ˆ � Y − ˆ RMSE Y ; Y = E Y . (1) 2 � � �

  4. Itˆ o-type SDE We consider a general Itˆ o-type SDE of the form d  σ j ( X t ) dW j � dX t = b ( X t ) dt +  t (2) j =1  X 0 = x where: x ∈ R n , ( X t ) t ∈ [0 , T ] is a n − dimensional stochastic process, � W 1 , . . . , W d � W = is a d − dimensional standard Brownian motion, b , σ 1 , . . . , σ d : R n → R n are Lipschitz continuous.

  5. Outline Introduction 1 Monte Carlo Methods 2 The Standard Monte Carlo Method The Multilevel Monte Carlo Numerical Schemes 3 The Ninomiya-Victoir Scheme An antithetic version of the Ninomiya-Victoir scheme Application to the Heston Model 4 The Heston model The Ninomiya-Victoir scheme in the Heston model

  6. Standard Monte Carlo Method The standard Monte Carlo method consists in: discretizing the SDE, using a numerical scheme X N , with N ∈ N ∗ steps, approximating the expectation using M ∈ N ∗ independent path simulations. To be clear, the crude Monte Carlo estimator is given by M Y CMC = 1 � � X N , k ˆ � (3) f T M k =1 where X N , k are independent copies of a numerical scheme X N .

  7. Complexity analysis Bias � � � � � � �� ˆ ˆ X N B Y CMC ; Y = E Y CMC − Y = E f − E [ f ( X T )] . (4) T The bias is related to the weak error of the scheme: � 1 � = c 1 � � � � X N E f − f ( X T ) N α + o . (5) T N α Variance = 1 � � � � �� ˆ X N (6) V Y CMC M V f . T Cost � ǫ − ( 2+ 1 α ) � C CMC = C × M × N = O (7) .

  8. Outline Introduction 1 Monte Carlo Methods 2 The Standard Monte Carlo Method The Multilevel Monte Carlo Numerical Schemes 3 The Ninomiya-Victoir Scheme An antithetic version of the Ninomiya-Victoir scheme Application to the Heston Model 4 The Heston model The Ninomiya-Victoir scheme in the Heston model

  9. The Multilevel Monte Carlo The main idea of this technique is to use the following telescopic summation to control the bias: L � � �� � � � � �� X 2 L X 2 l X 2 l − 1 X 1 � � � �� f = E f + f − f . E E T T T T l =1 Then, a generalized multilevel Monte Carlo estimator is built as follows: L M l 1 ˆ � � Z l Y MLMC = (8) k M l l =0 k =1 � Z l � where 0 ≤ l ≤ L , 1 ≤ k ≤ M l are independent random variables such that: k Z 0 � X 1 � � � �� = E f (9) E T and: � Z l � � � � � �� X 2 l X 2 l − 1 ∀ l ∈ { 1 , . . . , L } , E = E − f (10) f . T T

  10. Bias and variance Bias � � � � � � �� X 2 L ˆ ˆ B Y MLMC ; Y = E Y MLMC − Y = E f − E [ f ( X T )] . (11) T The bias is related to the weak error of the scheme: � 1 � = c 1 � � � � X 2 L − f ( X T ) 2 α L + o (12) E f . T 2 α L Variance L 1 � � � Z l � ˆ � = (13) V Y MLMC V . M l l =0

  11. Cost and canonical exemple Cost For a given discretization level l ∈ { 0 , . . . , L } , the computational cost of simulating one sample Z l is C λ l 2 l , where: C ∈ R + is a constant, depending only on the discretization scheme, ∀ l ∈ N , λ l ∈ Q ∗ + is a weight, depending only on l , L � M l λ l 2 l . C MLMC = C (14) l =0 Natural choice for Z l , l ∈ { 0 , . . . , L } Z 0 = f X 1 � � (15) T Z l = f � � � � X 2 l X 2 l − 1 − f , ∀ l ∈ { 1 , . . . , L } . (16) T T For this canonical choice, it is natural to take λ 0 = 1 and λ l = 3 2 .

  12. Optimal complexity Theorem (Complexity theorem (Giles)) � 2 such that ∀ l ∈ N : + × R ∗ and ∃ ( β, c 2 ) ∈ Assume that ∃ ( α, c 1 ) ∈ R ∗ R ∗ � + � 1 − Y = c 1 � � � �� X 2 l 2 α l + o (17) E f T 2 α l and � 1 � = c 2 � Z l � 2 β l + o . (18) V 2 β l Then, the optimal complexity is given by: C ∗ ǫ − 2 �  � MLMC = O if β > 1 ,    � �� 2 �  � � 1  C ∗ ǫ − 2  MLMC = O log if β = 1 , (19) ǫ    � ǫ − 2+ β − 1 �  C ∗  MLMC = O if β < 1 . α 

  13. Optimal parameters Optimal parameters � √ �  2 | c 1 |  log 2 L ∗ = ǫ (20)   α      � � �� L ∗ 2 V [ Z 0 ] M ∗ � � λ 0 V [ Z 0 ] + c 2 λ l 2 l (1 − β ) 0 = (21)   ǫ 2 λ 0   l =1   � �� L ∗ �� 2 � c 2 � ∀ l ∈ { 1 , . . . , L ∗ } , M ∗ � λ 0 V [ Z 0 ] + c 2 λ l 2 l (1 − β ) l = . (22) ǫ 2 λ l 2 l ( β +1) l =1 Regression One can estimate ( α, β, c 1 , c 2 ) by using a regression: ∼ c 2 � Z l � (23) V 2 β l ∼ c 1 (1 − 2 α ) � Z l � (24) E . 2 α l

  14. Outline Introduction 1 Monte Carlo Methods 2 The Standard Monte Carlo Method The Multilevel Monte Carlo Numerical Schemes 3 The Ninomiya-Victoir Scheme An antithetic version of the Ninomiya-Victoir scheme Application to the Heston Model 4 The Heston model The Ninomiya-Victoir scheme in the Heston model

  15. Stratonovich form Assuming C 1 regularity for diffusion coefficients σ 1 , . . . , σ d , the Itˆ o-type SDE can be written in Stratonovich form: d  σ j ( X t ) ◦ dW j dX t = σ 0 ( X t ) dt + �  t (25) j =1  X 0 = x d where σ 0 = b − 1 ∂σ j σ j and ∂σ j is the Jacobian matrix of σ j defined � 2 j =1 as follows ∂σ j = ∂σ j � ∂ x k σ ij � �� � � ] = ] . (26) ik i , k ∈ [ [1; n ] i , k ∈ [ [1; n ]

  16. The Ninomiya-Victoir scheme Notations � t k = k T � ] is the subdivision of [0 , T ]. N k ∈ [ [0; N ] η N = ( η 1 , . . . , η N ) is a sequence of independent, identically distributed Rademacher random variables independent of W . ∀ j ∈ { 1 , . . . , d } , ∆ W j t k +1 = W j t k +1 − W j t k . For j ∈ { 0 , . . . , d } and x 0 ∈ R d , let (exp( t σ j ) x 0 ) t ∈ R solve the ODE � dx ( t ) = σ j ( x ( t )) dt x (0) = x 0 . Scheme If η k +1 = 1 � T � T � � X NV , N ,η N � t k +1 σ d � � t k +1 σ 1 � X NV , N ,η N 2 N σ 0 ∆ W 1 2 N σ 0 ∆ W d = exp exp . . . exp exp t k +1 t k and if η k +1 = − 1 � T � T � � X NV , N ,η N � t k +1 σ d � � t k +1 σ 1 � X NV , N ,η N 2 N σ 0 ∆ W 1 ∆ W d 2 N σ 0 = exp exp . . . exp exp . t k +1 t k

  17. Order 2 of weak convergence Denoting by ( X x t ) t ≥ 0 the solution to the SDE starting from X x 0 = x ∈ R n , for f : R n → R n smooth, u ( t , x ) = E [ f ( X x t )] solves the Feynman-Kac PDE � ∂ u ∂ t ( t , x ) = Lu ( t , x ) , ( t , x ) ∈ [0 , ∞ ) × R n u (0 , x ) = f ( x ) , x ∈ R n = σ 0 + 1 � d with L = b . ∇ x + 1 ( σ 1 , . . . , σ d )( σ 1 , . . . , σ d ) ∗ ∇ 2 j =1 ( σ j ) 2 � � 2 Tr x 2 the infinitesimal generator. ∂ 2 u ∂ t 2 = ∂ ∂ t Lu = L ∂ ∂ t u = L 2 u and u ( t 1 , x ) = f ( x ) + t 1 Lf ( x ) + t 2 2 L 2 f ( x ) + O ( t 3 1 1 ) . Ninomiya and Victoir have designed their scheme so that )] = f ( x ) + t 1 Lf ( x ) + t 2 E [ f ( X NV , N ,η N 2 L 2 f ( x ) + O ( t 3 1 1 ) . t 1 N steps One step error O ( 1 → O ( 1 N 3 ) − N 2 ) global error.

  18. Order 1 / 2 of strong convergence Theorem (Strong convergence) Assume that the vector fields, b , ∀ j ∈ { 1 , . . . , d } , σ j and ∂σ j σ j are Lipschitz continuous functions. Then: ∀ p ≥ 1 , ∃ C NV ∈ R ∗ + , ∀ N ∈ N ∗ � � � 2 p ≤ C NV � � X t k − X NV , N ,η N � � max (27) E � η N p . � � � t k � � 0 ≤ k ≤ N

  19. Outline Introduction 1 Monte Carlo Methods 2 The Standard Monte Carlo Method The Multilevel Monte Carlo Numerical Schemes 3 The Ninomiya-Victoir Scheme An antithetic version of the Ninomiya-Victoir scheme Application to the Heston Model 4 The Heston model The Ninomiya-Victoir scheme in the Heston model

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend