multiscale modeling of optical and transport properties
play

Multiscale modeling of optical and transport properties of solids - PowerPoint PPT Presentation

Multiscale modeling of optical and transport properties of solids and nanostructures Yia-Chung Chang Research Center for Applied Sciences (RCAS) Academia Sinica, Taiwan NTU Colloquium , March 14, 2017 In collaboration with Ming-Ting Kuo, NCU


  1. Multiscale modeling of optical and transport properties of solids and nanostructures Yia-Chung Chang Research Center for Applied Sciences (RCAS) Academia Sinica, Taiwan NTU Colloquium , March 14, 2017 In collaboration with Ming-Ting Kuo, NCU S. J. Sun, J. Velev, Gefei Qian, Hye-Jung Kim, UIUC Zhenhua Ning, Chih-Chieh Chen, UIUC/RCAS Ching-Tang Liang, I-Lin Ho, RCAS J. W. Davenport, R. B. James, BNL T. O. Cheche, U. Burcharest, W. E. Mahmoud

  2. Outline • Optical excitations of solids/nanostructures modeled by: density-functional theory (DFT), tight-binding (TB), k.p model, and effective bond-orbital model (EBOM) • Transport and thermoelectric properties of nanostructure junctions modeled by non-equilibrium Green function method, including correlation • Examples: zincblende/cubic semiconductors, quantum wires, and QDs and QD tunnel junctions

  3. Excitation spectra Flow chart of BSE calculation for excitation spectra [ G. Onida, L. Reining, A. Rubio Rev. Mod. Phys., 74, 601, (2002)] DFT packages: VASP, CASTEP Abinit WIEN2K LMTO SIESTA LASTO

  4. Linearized Slater-type orbital (LASTO) method [J. W. Davenport, Phys. Rev. B 29, 2896 (1994)] • Inside MTs: exact numerical solution (u) & du/dE • Outside MTs: Slater-type orbitals, r n-1 e -br Y lm ( Ω ) • Match boundary conditions for each spherical harmonics

  5. Symmetry-adapted basis [Y.-C. Chang, R. B. James, and J. W. Davenport, PRB 73 , 035211 (2006)] Use of symmetry can reduce the computation effort significantly • Symmetry-adapted basis was not 128-atom fcc supercell commonly adopted in DFT calculations • (For general k, point symmetry is lost) • For large supercell calculations, only k=0 is needed, the use of symmetry- adated basis can be very beneficial • Examples: 1. Defects in solids with high point symmetry 2. High-symmetry nanoparticles like C60. 3. Optical excitations of nanoclusters • Irreducible 4. Excitonic excitation of solids with high symmetry segment

  6. Optically allowed transitions for T d group • Only the following 6 (& exch.) out of 100 possible configurations are allowed: • Polarization matrix in RPA: [Use FFT] • Polarization matrix in symmetry-adapted basis: Using Wigner-Ekart theorem:

  7. Optical spectra calculated by Bathe-Salpeter Eq. in LASTO basis Si LiF • BSE (solid line) • RPA (dashed line) • Results similar to LAPW results: • [Puschnig* and C. Ambrosch-Draxl, PRB 66 , 165105 (2002)]

  8. Optical spectra of GaAs, AlAs & SLs GaAs AlAs AlAs 1X1 SL GaAs Exp [Exp. data taken from [M. Garriga et al., Phys. Rev. B 36 , 3254 (1987)]

  9. Supercell method in plane-wave basis

  10. • Symmetrized Plane-wave basis •Ψ = Σ s C(G s )|G s > • The star of G • (001) • G • G s s • (010) • (001) • dzt • 10

  11. • dzt • 11

  12. • dzt • 12

  13. The meta-Generalized Gradient Approximation mGGA (TB09) [F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)] Becke-Roussel exchange potential [A.D. Becke & M.R. Roussel, Phys. Rev. A 39, 3761 (1989)] TDDFT with mGGA : [V.U. Nazarov & G. Vignale, PRL 107, 216402(2011)]

  14. Band structure comparison

  15. Comparison between LASTO & WIEN2k

  16. Excitation spectra Si GaAs

  17. Dielectric functions of InGaAs & InAsP alloys obtained by TDDFT based on mGGA [F. Tran and P. Blaha, PRL 102, 226401 (2009)] [V.U. Nazarov and G. Vignale, PRL 107 , 216402(2011)]

  18. Bond-orbital model [S. Sun,Y. C. Chang, PRB 62, 13631 (2000)]       H k E ' '     , p ,                   2    2  1 ik e E E E E    ' '    xy xx xy zz ,  Strain H am iltonian      V D 3 de 3 de   H 1 xy xz       H 3 de V D 3 de st xy H 2 yz      3 de 3 de V D   2 xz yz H 3 3 e ij =(  ij +  ji )/2  V H =(a 1 +a 2 )(  xx +  yy +  zz ) i D 1 =b(2  xx -  yy -  zz ) D 2 =b(2  yy -  xx -  zz ) D 3 =b(2  zz -  xx -  yy ) 4 a 1 , a 2 , b, d = deform ation potentials. 1

  19. InAs/GaAs Self assembled quantum dots Incident light InAs Wetting layer Area density GaAs 11 / Infrared detector 2 10 cm Lattice mismatch 7% Laser

  20. Bond-orbital model [S. Sun,Y. C. Chang, PRB 62, 13631 (2000)] s v’ s v y (0,1,0) x (0,0,1)

  21. Valence force field (VFF) Model   1 3  2   2  2 2 V d d d 0 , 0 , 4 4 ij ij ij ij ij     1 3   2     3 d d d d d d 0 , 0 , 0 , 0 , 2 4 4 ijk ij ik ij ik ij ik  i j k 3 i labels atom positions d i2 d i3 j , k label nearest-neighbors of i d ij = bond length joining sites i and j i d 0,ij is the corresponding equilibrium length d i4  ij = bond stretching constants d i1 d ijk = bond bending constants 4 We take d ijk 2 = d ij d ik 1

  22. Ground Transition Energy Varying With Dot Height (comparing to Experiment) UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Dot base length 200Å 1.24 Theory Theoty 1.20 Energy (eV) Experiment 1.16 1.12 1.08 1.04 20 40 60 80 100 Island height (A)

  23. PL/PLE Characterization: Electronic Structure InAs WL InAs/GaAs QDs PL Intensity (arb. units) 3ML PIG GaAs GaAs T=7K QD I EXC ~5000W/cm 2 E EXC =2.41eV ~310+50meV Log of Intensity (arb. units) E c strongest transitions PLE E WL e E DET =1.062eV E 3 50meV E weaker transitions 2 59meV E 1 +LO phonon transition V V e e 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 2 5 5 4 1.062eV 1.229eV 1.121eV 1.197eV 1.147eV Energy (eV) . . 1 1 ? Ground state at 1.062eV Excited states: H 1,2 26meV Strongest at 1.147eV and 1.229eV H 32meV 3 H E WL Weaker at 1.121eV and 1.197eV 4 h E v ~150+50meV [Data from A. Madhkar (USC)]

  24. Intra-band Transitions 0.4 ~310+50meV ~310+50meV Normal incidence 162 meV WL E E c E c e 7.62 m m Bias: -0.5 V WL E Photocurrent (nA) e 0.3 @77K E 3 50meV E 5 184 meV E E 4 59meV 2 6.7 m m 0.2 E 1 E 3 V e E 5 2 4 V V V V V . 0.1 1 e e e e e 110 meV E 1 1 7 2 7 9 2 9 6 4 2 V V V 11.3 m m 2 1 1 0 1 e e e . . . . . 1 1 1 1 1 m m m 2 0 4 H 1,2 6 26meV 1 8 0.0 1 1 1 H 32meV 3 2500 2000 1500 1000 H 4 -1 ) Wavenumber (cm E v E WL ~150+50meV h Data from A. Madhkar (USC)

  25. Intra-band Transitions Table 4 Inter-sub band transition matrix elements of ground electron state to upper  2 three electron states, . B=200A, h=80A.   r 1 , c i c , Symmetry state i x y z (Ei(DEE1E1)E 0.2 A1 #2 (0.111) 0 0 0 0 #3 (0.123) 57 #4 (0.197) 0 0 201 28.5 A2 #2 (0.106) 0 0 0 0 #3 (0.114) 0 15 B1,B2 #2 (0.109) 0 0 0 0 #3 (0.138) 42 #4 (0.201) 0 0 14 0 A1-B1n #1 (0.062) 446 446 0.2 0.2 #2 (0.162) 0 #3 (0.218) 0.4 0.4 0 #2(0.049) 536 536 0 B1-A1n #3(0.061) 659 659 0 #4(0.135) 376 376 0 #5(0.161) 10.2 10.2 0

  26. Effective bond-orbital model for QWRs [Y. C. Chang, W. E. Mahmoud, Comp. Phys. Comm., 196, 92 (2015)] • ( 4 4 4 4 4 4 • ( 2 2 2 2 2 2 b) a) InAs GaSb 0 0 0 0 0 0 E (eV) E (eV) -2 -2 -2 -2 -2 -2 -4 -4 -4 -4 -4 -4 -6 -6 -6 -6 -6 -6 -8 -8 -8 -8 -8 -8 -1 -1 -1 0 0 0 1 1 1 2 2 2 -1 -1 -1 0 0 0 1 1 1 2 2 2     L X K L X K Wave Vector, k Wave Vector, k 4 4 4 4 4 4 • ( • ( 2 2 2 2 2 2 c) d) GaAs CdTe 0 0 0 0 0 0 E (eV) E (eV) -2 -2 -2 -2 -2 -2 -4 -4 -4 -4 -4 -4 -6 -6 -6 -6 -6 -6 -8 -8 -8 -8 -8 -8 -1 -1 -1 0 0 0 1 1 1 2 2 2 -1 -1 -1 0 0 0 1 1 1 2 2 2     L X K L X K Wave Vector, k Wave Vector, k

  27. 2.0 2.0 2.0 0.0 0.0 0.0 • ( • ( InAs NW VB 1.8 1.8 1.8 a) b) d = 5nm -0.2 -0.2 -0.2 1.6 1.6 1.6 E (eV) E (eV) 1.4 1.4 1.4 -0.4 -0.4 -0.4 1.2 1.2 1.2 1.0 1.0 1.0 -0.6 -0.6 -0.6 InAs NW CB d = 5nm 0.8 0.8 0.8 -0.8 -0.8 -0.8 0.6 0.6 0.6 0.0 0.0 0.0 0.5 0.5 0.5 1.0 1.0 1.0 1.5 1.5 1.5 2.0 2.0 2.0 2.5 2.5 2.5 0.0 0.0 0.0 0.5 0.5 0.5 1.0 1.0 1.0 1.5 1.5 1.5 2.0 2.0 2.0 2.5 2.5 2.5 -1 -1 Wave Vector, k (nm ) Wave Vector, k (nm ) • ( • ( 2.0 2.0 2.0 0.0 0.0 0.0 InAs NW VB c) d) 1.8 1.8 1.8 d = 7nm -0.1 -0.1 -0.1 1.6 1.6 1.6 -0.2 -0.2 -0.2 E (eV) E (eV) 1.4 1.4 1.4 1.2 1.2 1.2 -0.3 -0.3 -0.3 1.0 1.0 1.0 InAs NW CB -0.4 -0.4 -0.4 d = 7nm 0.8 0.8 0.8 0.6 0.6 0.6 -0.5 -0.5 -0.5 0.0 0.0 0.0 0.5 0.5 0.5 1.0 1.0 1.0 1.5 1.5 1.5 2.0 2.0 2.0 2.5 2.5 2.5 0.0 0.0 0.0 0.5 0.5 0.5 1.0 1.0 1.0 1.5 1.5 1.5 2.0 2.0 2.0 2.5 2.5 2.5 -1 -1 Wave Vector, k (nm ) Wave Vector, k (nm )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend