multipole superconductivity and unusual gap closing
play

Multipole Superconductivity and Unusual Gap Closing Application to - PowerPoint PPT Presentation

Novel Quantum States in Condensed Matter 2017 Nov. 17, 2017 Multipole Superconductivity and Unusual Gap Closing Application to Sr 2 IrO 4 and UPt 3 Department of Physics, Kyoto University Shuntaro Sumita SS, T. Nomoto, & Y. Yanase,


  1. Novel Quantum States in Condensed Matter 2017 Nov. 17, 2017 Multipole Superconductivity and Unusual Gap Closing ― Application to Sr 2 IrO 4 and UPt 3 ― Department of Physics, Kyoto University Shuntaro Sumita SS, T. Nomoto, & Y. Yanase, Phys. Rev. Lett. 119 , 027001 (2017). S. Kobayashi, SS, Y. Yanase, & M. Sato, in preparation. SS & Y. Yanase, in preparation.

  2. Outline 1. Introduction 2. Method: Superconducting gap classification based on space group symmetry 3. Result 1: Condition for nonsymmorphic line nodes (a) Complete classification (b) Application: Sr 2 IrO 4 4. Result 2: j z -dependent point nodes in UPt 3 5. Conclusion

  3. Outline 1. Introduction 2. Method: Superconducting gap classification based on space group symmetry 3. Result 1: Condition for nonsymmorphic line nodes (a) Complete classification (b) Application: Sr 2 IrO 4 4. Result 2: j z -dependent point nodes in UPt 3 5. Conclusion

  4. Superconducting gap classification (point group) ‣ Most studies: gap classification based on 
 crystal point group symmetry ‣ Classification theory by Sigrist & Ueda (1991) (1) Most simple basis of OP 
 Classification for D 6h for each point group (2) Gap or node @ specific k ‣ Ex.) Point group D 6h Line node @ k z = 0 Γ 1 − ( A 1u ): k x ˆ x + k y ˆ y, k z ˆ z → No line node with SOC Blount's theorem (1985): "No line node for odd-parity SC w/ SOC" M. Sigrist & K. Ueda, RMP (1991)

  5. Superconducting gap classification (space group) ‣ Recent study: importance of space group symmetry (Point group) + (Translation) ‣ Classification theory based on (magnetic) space group (1) Choosing specific k at first (2) The presence or absence of Cooper pair w.f. ‣ Ex.) Space group P6 3 /mmc ( D 6h4 ) + TRS M. R. Norman (1995) T. Micklitz & M. R. Norman (2009) A 1u : → Gap, → Line node 
 k z = 0 , k z = π Incompatible w/ Blount's theorem due to nonsymmorphic symmetry ‣ Unusual gap structures beyond Sigrist-Ueda method !

  6. Results by space group & Unsolved questions ‣ Nontrivial line nodes by nonsymmorphic symmetry • UPt 3 , UCoGe, UPd 2 Al 3 T. Micklitz & M. R. Norman (2009, 2017) T. Nomoto & H. Ikeda (2017) k z Nonsymmorphic symmetry Zone face (ZF) ↓ Basal plane (BP) Difference in reps. of gap k y between BP and ZF k x → What is the condition for nontrivial line nodes ? ‣ Only a few & less-known studies of point nodes → Do point nodes peculiar to crystal group exist ?

  7. Abstract of this study Aim 1 Aim 2 Investigate the condition for Consider crystal symmetry- nonsymmorphic line nodes protected point nodes Method Gap classification based on space group symmetry Result 1 Result 2 Complete classification j z -dependent point nodes ‣ Application: Sr 2 IrO 4 ‣ Application: UPt 3

  8. Outline 1. Introduction 2. Method: Superconducting gap classification based on space group symmetry 3. Result 1: Condition for nonsymmorphic line nodes (a) Complete classification (b) Application: Sr 2 IrO 4 4. Result 2: j z -dependent point nodes in UPt 3 5. Conclusion

  9. Gap classification (Flow) High-symmetry Little group k -point Magnetic space group ‣ Small representation ‣ Centrosymmetric = Bloch state at k I k = − k Bloch state at − k Bloch state at k Antisymmetric direct product ( Mackey-Bradley theorem ) Representation of Cooper pair wave function

  10. Outline 1. Introduction 2. Method: Superconducting gap classification based on space group symmetry 3. Result 1: Condition for nonsymmorphic line nodes (a) Complete classification (b) Application: Sr 2 IrO 4 4. Result 2: j z -dependent point nodes in UPt 3 5. Conclusion

  11. System for classification of line nodes ‣ Gap classification: inversion ‣ On high-sym. k -plane: mirror (glide) & primitive lattice → Space group contains C 2h :  { E | 0 } T + { I | 0 } T + { C 2 ? | 0 } T + { σ ? | 0 } T (i) Rotation + Mirror    { E | 0 } T + { I | 0 } T + { C 2 ? | τ k } T + { σ ? | τ k } T (ii) Rotation + Glide  G = { E | 0 } T + { I | 0 } T + { C 2 ? | τ ? } T + { σ ? | τ ? } T (iii) Screw + Mirror    { E | 0 } T + { I | 0 } T + { C 2 ? | τ k + τ ? } T + { σ ? | τ k + τ ? } T (iv) Screw + Glide  twofold axis Note) • : space group operator { p | a } r = p r + a • T : translation group mirror plane • : non-primitive translation τ � , τ � → Nonsymmorphic

  12. Magnetic space group M ‣ Ferromagnetic (FM) (Unitary space group) M = G ‣ Paramagnetic (PM) or Antiferromagnetic (AFM) M = G + ˜ θ G (b) ‣ Anti-unitary operator: twofold  { θ | 0 } (a) PM axis    { θ | τ � } (b) AFM 1  ˜ θ = { θ | τ � } (c) AFM 2    { θ | τ � + τ � } (d) AFM 3 

  13. Classification results by IRs of C 2h  { θ | 0 } (a)  { E | 0 } T + { I | 0 } T + { C 2 ? | 0 } T + { σ ? | 0 } T (i) R      { θ | τ � } (b)  { E | 0 } T + { I | 0 } T + { C 2 ? | τ k } T + { σ ? | τ k } T (ii)   ˜ θ = G = { θ | τ � } (c) { E | 0 } T + { I | 0 } T + { C 2 ? | τ ? } T + { σ ? | τ ? } T (iii)       { θ | τ � + τ � } (d)  { E | 0 } T + { I | 0 } T + { C 2 ? | τ k + τ ? } T + { σ ? | τ k + τ ? } T (iv)  ˜ BP ( k ⊥ = 0) ZF ( k ⊥ = π ) G θ (i), (ii) - A u FM A u ← UCoGe [1] (iii), (iv) - B u (i), (ii) (a), (b) A g + 2 A u + B u ← Sr 2 IrO 4 PM (i), (ii) (c), (d) B g + 3 A u A g + 2 A u + B u AFM ← UPt 3 [2] (iii), (iv) (a), (b) A g + 3 B u ← UPd 2 Al 3 [1], Sr 2 IrO 4 (iii), (iv) (c), (d) B g + A u + 2 B u [1] T. Nomoto & H. Ikeda (2017) / [2] T. Micklitz & M. R. Norman (2009) Non-primitive translation mirror (glide) plane ⊥ → Nonsymmorphic line node (gap opening) ! T. Micklitz & M. R. Norman (2017)

  14. Application to centrosymmetric space groups Tetragonal  { E | 0 } T + { I | 0 } T + { C 2 ? | 0 } T + { σ ? | 0 } T (i) R    { E | 0 } T + { I | 0 } T + { C 2 ? | τ k } T + { σ ? | τ k } T (ii)  No. SG ⊥ = z ⊥ = x, y G = 83 P 4 /m (i) - { E | 0 } T + { I | 0 } T + { C 2 ? | τ ? } T + { σ ? | τ ? } T (iii)  84 P 4 2 /m (i) -   { E | 0 } T + { I | 0 } T + { C 2 ? | τ k + τ ? } T + { σ ? | τ k + τ ? } T (iv)  85 P 4 /n (ii) - 86 P 4 2 /n (ii) - Monoclinic Orthorhombic 123 P 4 /mmm (i) (i) 124 P 4 /mcc (i) (ii) 125 P 4 /nbm (ii) (ii) No. SG ⊥ = y No. SG ⊥ = x ⊥ = y ⊥ = z 126 P 4 /nnc (ii) (ii) 10 P 2 /m (i) 47 Pmmm (i) (i) (i) UPd 2 Al 3 127 P 4 /mbm (i) (iv) 11 P 2 1 /m (iii) 48 (ii) (ii) (ii) Pnnn 128 P 4 /mnc (i) (iv) 49 (ii) (ii) (i) 13 P 2 /c (ii) Pccm UCoGe 129 P 4 /nmm (ii) (iii) 50 Pban (ii) (ii) (ii) 14 P 2 1 /c (iv) 130 P 4 /ncc (ii) (iv) 51 (iii) (i) (ii) Pmma 131 P 4 2 /mmc (i) (i) 52 (ii) (iv) (ii) Pnna 132 P 4 2 /mcm (i) (ii) 53 Pmna (i) (ii) (iv) Sr 2 IrO 4 133 P 4 2 /nbc (ii) (ii) 54 (iv) (ii) (ii) Pcca 134 P 4 2 /nnm (ii) (ii) 55 (iv) (iv) (i) Pbam (This talk) 135 P 4 2 /mbc (i) (iv) 56 Pccn (iv) (iv) (ii) 136 P 4 2 /mnm (i) (iv) 57 (ii) (iv) (iii) Pbcm 137 P 4 2 /nmc (ii) (iii) 58 (iv) (iv) (i) Pnnm Cubic 138 P 4 2 /ncm (ii) (iv) 59 Pmmn (iii) (iii) (ii) Hexagonal 60 (iv) (ii) (iv) Pbcn No. SG ⊥ = x, y, z 61 (iv) (iv) (iv) Pbca Pm ¯ 200 3 (i) No. SG ⊥ = z ⊥ = [1 − 10] , [120] , [210] 62 Pnma (iv) (iii) (iv) Pn ¯ 201 3 (ii) 63 Cmcm - - (iii) 175 P 6 /m (i) - Pa ¯ 205 3 (iv) 64 - - (iv) 176 P 6 3 /m (iii) - Cmca Pm ¯ 221 3 m (i) 65 - - (i) Cmmm 191 P 6 /mmm (i) (i) Pn ¯ 222 3 n (ii) 66 Cccm - - (i) 192 P 6 /mcc (i) (ii) Pm ¯ 223 3 n (i) 67 - - (ii) 193 P 6 3 /mcm (iii) (i) Cmma UPt 3 Pn ¯ 224 3 m (ii) 68 - - (ii) 194 P 6 3 /mmc (iii) (ii) Ccca

  15. Outline 1. Introduction 2. Method: Superconducting gap classification based on space group symmetry 3. Result 1: Condition for nonsymmorphic line nodes (a) Complete classification (b) Application: Sr 2 IrO 4 4. Result 2: j z -dependent point nodes in UPt 3 5. Conclusion

  16. What is Sr 2 IrO 4 ? ‣ A layered perovskite insulator ‣ Nonsymmorphic lattice: I4 1 /acd or I4 1 /a ‣ Locally parity violation on Ir sites 
 → Sublattice-dependent ASOC ‣ Many similarities to high- T c cuprate • Pseudogap & d -wave gap under doping Y. K. Kim et al. (2014, 2016) / Y. J. Yan et al. (2015) • Theory of d -wave superconductivity F. Ye et al. (2013) H. Watanabe et al. (2013) → Expectation for (high- T c ) superconductivity ! • J eff = 1/2 antiferromagnet

  17. Magnetic structures on Ir site ‣ Canted moments: AFM along a axis & FM along b axis − ++ − pattern B. J. Kim et al. (2009) Symmetry analysis ‣ B 1g representation of D 4h ‣ Even-parity magnetic octupole Unusual gap structures b − + − + pattern L. Zhao et al. (2016) Symmetry analysis a ‣ E u representation of D 4h SS, T. Nomoto, & Y. Yanase ‣ Odd-parity magnetic quadrupole PRL 119 , 027001 (2017) FFLO superconductivity

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend