multiple zeta values for classical special functions
play

Multiple zeta values for classical special functions Tanay Wakhare, - PowerPoint PPT Presentation

Multiple zeta values for classical special functions Tanay Wakhare, Christophe Vignat May 23, 2018 Tanay Wakhare MZV Given some function G ( z ) , we denote by { a n } the set of its zeros (assumed to be non-zero complex numbers). Then define a


  1. Multiple zeta values for classical special functions Tanay Wakhare, Christophe Vignat May 23, 2018

  2. Tanay Wakhare

  3. MZV Given some function G ( z ) , we denote by { a n } the set of its zeros (assumed to be non-zero complex numbers). Then define a zeta function associated with G as ∞ 1 � ζ G ( s ) = . a s n n = 1

  4. MZV Given some function G ( z ) , we denote by { a n } the set of its zeros (assumed to be non-zero complex numbers). Then define a zeta function associated with G as ∞ 1 � ζ G ( s ) = . a s n n = 1 We also construct a multiple zeta function as 1 � ζ G ( s 1 , . . . , s r ) = a s 1 n 1 · · · a s r n r n 1 > n 2 > ··· > n r ≥ 1 and a multiple zeta-starred function as 1 ζ ∗ � G ( s 1 , . . . , s r ) = . a s 1 n 1 · · · a s r n r n 1 ≥ n 2 ≥···≥ n r ≥ 1

  5. MZV Denote ζ G ( { s } n ) = ζ G ( { s , s , . . . } ) ζ ∗ G ( { s }} n ) = ζ ∗ G ( { s , s , . . . } )

  6. MZV and ground states Given a quantum system with eigenvalues { E 1 , E 2 , . . . } , arranged in decreasing order of magnitude, the quantum zeta function Z ( s ) is defined as the series ∞ 1 � Z ( s ) = , E s n n = 1 and the ground state energy E 1 can be approximated as 1 E 1 ∼ Z ( s ) s

  7. MZV and ground states Given a quantum system with eigenvalues { E 1 , E 2 , . . . } , arranged in decreasing order of magnitude, the quantum zeta function Z ( s ) is defined as the series ∞ 1 � Z ( s ) = , E s n n = 1 and the ground state energy E 1 can be approximated as 1 E 1 ∼ Z ( s ) s In the case of a quantum multiple zeta function Z ( s 1 , s 2 , . . . , s r ) , an equivalent is 1 1 Z ( { s } r ) s ∼ E 1 E 2 · · · E r

  8. outline We address two questions in this talk: ◮ what does the knowledge of the Weierstrass product factorization of the function G tell us about the MZV built on its zeros ?

  9. outline We address two questions in this talk: ◮ what does the knowledge of the Weierstrass product factorization of the function G tell us about the MZV built on its zeros ? ◮ what are the benefits of introducing generalized Bernoulli numbers in the computation of the MZV’s ?

  10. Definitions and Methodology Symmetric functions - the elementary symmetric functions e r = � i 1 < i 2 <...< i r x i 1 x i 2 · · · x i r , - the complete symmetric functions h r = � i 1 ≤ i 2 ≤ ... ≤ i r x i 1 x i 2 · · · x i r i x r - the power sums p r = � i .

  11. Definitions and Methodology Symmetric functions - the elementary symmetric functions e r = � i 1 < i 2 <...< i r x i 1 x i 2 · · · x i r , - the complete symmetric functions h r = � i 1 ≤ i 2 ≤ ... ≤ i r x i 1 x i 2 · · · x i r i x r - the power sums p r = � i . The symmetric functions have generating functions ∞ ∞ e k t k = � � E ( t ) = ( 1 + tx i ) , i = 1 k = 0 ∞ ∞ h k t k = ( 1 − tx i ) − 1 = E ( − t ) − 1 , � � H ( t ) = k = 0 i = 1 ∞ ∞ = H ′ ( t ) H ( t ) = E ′ ( − t ) x i p k t k − 1 = � � P ( t ) = E ( − t ) . 1 − tx i k = 1 i = 1

  12. Definitions and Methodology Lemma When x i = 1 i , a s ∞ 1 � p k = ζ G ( ks ) = a ks n n = 1 1 � { s } k � � e k = ζ G = a s n 1 a s n 2 . . . a s n k n 1 > n 2 > ··· > n r ≥ 1 and 1 � { s } k � h k = ζ ∗ � = G a s n 1 a s n 2 . . . a s n k n 1 ≥ n 2 ≥···≥ n r ≥ 1

  13. Definitions and Methodology As a consequence define the averaged zeta � S ( mn , k ) = ζ G ( ma 1 , . . . , ma k ) , | a | = n S ∗ � ζ ∗ G ( mn , k ) = G ( ma 1 , . . . , ma k ) | a | = n

  14. Definitions and Methodology As a consequence define the averaged zeta � S ( mn , k ) = ζ G ( ma 1 , . . . , ma k ) , | a | = n S ∗ � ζ ∗ G ( mn , k ) = G ( ma 1 , . . . , ma k ) | a | = n The following generating products hold: � � 1 + ( y − 1 ) t ∞ ∞ n a s � � � S G ( sn , k ) y k t n , k = � � 1 − t k = 1 n = 0 k = 0 a s k � � 1 − t ∞ ∞ n a s � � � S ∗ G ( sn , k ) y k t n k � = � 1 − ( y + 1 ) t k = 1 n = 0 k = 0 a s k

  15. Hypergeometric Zeta The hypergeometric zeta function is defined by 1 � ζ a , b ( s ) = , z s a , b ; k k ≥ 1 where z a , b ; k are the zeros of the classic Kummer (confluent hypergeometric) function � � a Φ a , b ( z ) := 1 F 1 a + b ; z . The zeros z a , b ; k are pair-wise complex conjugated.

  16. Hypergeometric Zeta For a = 1 , b = 0, we have � 1 � = e z . Φ 1 , 0 ( z ) = 1 F 1 1 ; z For b = a , we have � a � I a − 1 2 ( z ) � � a + 1 z 2 2 2 a − 1 Γ Φ a , a ( z ) = 1 F 1 2 a ; z = e . 2 z a − 1 2

  17. Hypergeometric Zeta This function has the Weierstrass factorization � � � z � z a a a + b z � za , b ; k . a + b ; z = e 1 − 1 F 1 e z a , b ; k k ≥ 1

  18. Hypergeometric Zeta This function has the Weierstrass factorization � � � z � z a a a + b z � za , b ; k . a + b ; z = e 1 − 1 F 1 e z a , b ; k k ≥ 1 We deduce a (nontrivial) generating function for ζ a , b ( s ) as ∞ � Φ a , b + 1 ( z ) � b ζ a , b ( k + 1 ) z k = � − 1 . a + b Φ a , b ( z ) k = 1

  19. Hypergeometric Zeta This function has the Weierstrass factorization � � � z � z a a a + b z � za , b ; k . a + b ; z = e 1 − 1 F 1 e z a , b ; k k ≥ 1 We deduce a (nontrivial) generating function for ζ a , b ( s ) as ∞ � Φ a , b + 1 ( z ) � b ζ a , b ( k + 1 ) z k = � − 1 . a + b Φ a , b ( z ) k = 1 Moreover, from the Weierstrass factorization we deduce � � z 2 � � � � a a � a + b ; ı z a + b ; − ı z = 1 + 1 F 1 1 F 1 . z 2 a , b ; k k ≥ 1 We need an identity originally due to Ramanujan [1, Entry 18, p.61] and later proved by Preece.

  20. Hypergeometric Zeta Lemma We have the identity ; − z 2 � � � � � � a a a , b a + b ; ı z a + b ; − ı z = 2 F 3 1 F 1 1 F 1 . a + b , a + b 2 , a + b + 1 4 2 The multiple zeta value ζ a , b ( { 2 } n ) can be deduced as ζ a , b ( { 2 } n ) = ( − 1 ) n ( a ) n ( b ) n . n ! ( a + b ) n ( a + b ) 2 n For example, ab ζ a , b ( { 2 } ) = − ( a + b ) 2 ( a + b + 1 )

  21. Hypergeometric Zeta The values of ζ a , b ( { 2 r } n ) for r = 1 , 2 , . . . can be recursively computed from ζ a , b ( { 2 } n ) using the following general result. Theorem Take m ∈ Z , m > 0 and ω a primitive m − th root of unity. Then m − 1 ζ G ( { ms } n ) = ( − 1 ) n ( m − 1 ) � � ζ G ( { s } l j ) ω jl j . l 0 + l 1 + ··· + l m − 1 = mn j = 0

  22. Hypergeometric Zeta Proof. Start with the identity 1 − z m = � m − 1 j = 0 ( 1 − z ω j ) for m > 0 , so that ∞ ∞ ∞ m − 1 1 − t m 1 − t ω j � � � � ( − 1 ) n ζ G ( { ms } n ) t mn = � � � � = a ms a s k k n = 0 k = 1 k = 1 j = 0 � ∞ m − 1 ∞ m − 1 � 1 − t ω j � � � � � � ω jn ( − 1 ) n ζ G ( { s } n ) t n = = . a s k j = 0 k = 1 j = 0 n = 0

  23. Hypergeometric Zeta Theorem The multiple zeta value ζ a , b ( { 4 } n ) is equal to ζ a , b ( { 4 } n ) = ( − 1 ) n ( a ) 2 n ( b ) 2 n ( 2 n )! ( a + b ) 2 n ( a + b ) 4 n � − 2 n , 1 − 2 n − a − b , 1 − 2 n − a + b 2 , 1 − 2 n − a + b + 1 � , a , b × 6 F 5 2 ; − 1 1 − 2 n − a , 1 − 2 n − b , a + b , a + b 2 , a + b + 1 2 For example, ζ a , b ( { 4 } ) = − ab ( a 3 + a 2 ( 1 − 2 b ) + b 2 ( 1 + b ) − 2 ab ( 2 + b ) ( a + b ) 4 ( 1 + a + b ) 2 ( 2 + a + b )( 3 + a + b ) .

  24. Hypergeometric Zeta Proof. We want to compute ζ a , b ( { 4 } n ) from the generating function � � z 4 ζ a , b ( { 4 } n ) z 4 n = � � 1 + z 4 a , b ; k n ≥ 0 k ≥ 1 1 + ( √ ı z ) 2 1 + ( ı √ ı z ) 2 � � � � � � = . z 2 z 2 a , b ; k a , b ; k k ≥ 1 k ≥ 1 � � � � a , b z 2 ; − z 2 Since � 1 + = 2 F 3 , we k ≥ 1 a + b , a + b 2 , a + b + 1 z 2 4 a , b ; k 2 deduce � ζ a , b ( { 4 } n ) z 4 n n ≥ 0 ; − ı z 2 ; ı z 2 � � � � a , b a , b = 2 F 3 2 F 3 . a + b , a + b 2 , a + b + 1 a + b , a + b 2 , a + b + 1 4 4 2 2

  25. Hypergeometric Zeta Proof. We have z k � � � � ( α 1 ) k ( α 2 ) k a 1 , a 2 α 1 , α 2 � k ! d k b 1 , b 2 , b 3 ; cz β 1 , β 2 , β 3 ; dz = 2 F 3 2 F 3 ( β 1 ) k ( β 2 ) k ( β 3 ) k k ≥ 0 � − k , 1 − k − β 1 , 1 − k − β 2 , 1 − k − β 3 , a 1 , a 2 ; c � × 6 F 5 . 1 − k − α 1 , 1 − k − α 2 , b 1 , b 2 , b 3 d

  26. Hypergeometric Zeta Proof. We have z k � � � � ( α 1 ) k ( α 2 ) k a 1 , a 2 α 1 , α 2 � k ! d k b 1 , b 2 , b 3 ; cz β 1 , β 2 , β 3 ; dz = 2 F 3 2 F 3 ( β 1 ) k ( β 2 ) k ( β 3 ) k k ≥ 0 � − k , 1 − k − β 1 , 1 − k − β 2 , 1 − k − β 3 , a 1 , a 2 ; c � × 6 F 5 . 1 − k − α 1 , 1 − k − α 2 , b 1 , b 2 , b 3 d Therefore our desired hypergeometric product is � ı z 2 n ( a ) n ( b ) n � n � � a + b � a + b + 1 n ! 4 � � ( a + b ) n n ≥ 0 2 n 2 n � − n , 1 − n − a − b , 1 − n − a + b 2 , 1 − n − a + b + 1 � , a , b 2 × 6 F 5 ; − 1 1 − n − a , 1 − n − b , a + b , a + b 2 , a + b + 1 2

  27. Hypergeometric Zeta * a , b ( { 2 } n ) with generating function We want to compute now ζ ∗ � − 1 � z 2 a , b ( { 2 } n ) z 2 n = � ζ ∗ � 1 − z 2 a , b ; k n ≥ 0 k ≥ 1 1 = � . � � � a a 1 F 1 a + b ; z 1 F 1 a + b ; − z

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend