multiple imputation methods for incomplete longitudinal
play

Multiple imputation methods for incomplete longitudinal ordinal - PowerPoint PPT Presentation

Multiple imputation methods for incomplete longitudinal ordinal data: a simulation study Anne-Francoise DONNEAU Medical Informatics and Biostatistics School of Public Health University of Li` ege Promotor: Pr. A. Albert 14 September 2012


  1. Multiple imputation methods for incomplete longitudinal ordinal data: a simulation study Anne-Francoise DONNEAU Medical Informatics and Biostatistics School of Public Health University of Li` ege Promotor: Pr. A. Albert 14 September 2012 AFr. Donneau (ULg) Multiple imputation methods for incomplete longitudinal ordinal data: a simulation study 1 / 21

  2. Outline of the presentation ◮ Introduction ◮ Methods for (incomplete) Non-Gaussian longitudinal data Generalized Estimating Equations (GEE) Multiple imputation based GEE (MI-GEE) ◮ Simulation plan ◮ Results ◮ Conclusions AFr. Donneau (ULg) Multiple imputation methods for incomplete longitudinal ordinal data: a simulation study 2 / 21

  3. Introduction Ordinal longitudinal data Analysis of ordinal longitudinal data Units: Subjects, objects ( i = 1 , · · · , N ) AFr. Donneau (ULg) Multiple imputation methods for incomplete longitudinal ordinal data: a simulation study 3 / 21

  4. Introduction Ordinal longitudinal data Analysis of ordinal longitudinal data Units: Subjects, objects ( i = 1 , · · · , N ) Outcome: Ordinal variable Y with K levels AFr. Donneau (ULg) Multiple imputation methods for incomplete longitudinal ordinal data: a simulation study 3 / 21

  5. Introduction Ordinal longitudinal data Analysis of ordinal longitudinal data Units: Subjects, objects ( i = 1 , · · · , N ) Outcome: Ordinal variable Y with K levels Measurement: Repeated at T time points, Y i = ( Y i 1 , · · · , Y iT ) ′ AFr. Donneau (ULg) Multiple imputation methods for incomplete longitudinal ordinal data: a simulation study 3 / 21

  6. Introduction Ordinal longitudinal data Analysis of ordinal longitudinal data Units: Subjects, objects ( i = 1 , · · · , N ) Outcome: Ordinal variable Y with K levels Measurement: Repeated at T time points, Y i = ( Y i 1 , · · · , Y iT ) ′ Covariates: T × p covariates matrix X i = ( x i1 , · · · , x iT ) ′ Time, gender, age ... AFr. Donneau (ULg) Multiple imputation methods for incomplete longitudinal ordinal data: a simulation study 3 / 21

  7. Introduction Ordinal longitudinal data Analysis of ordinal longitudinal data Units: Subjects, objects ( i = 1 , · · · , N ) Outcome: Ordinal variable Y with K levels Measurement: Repeated at T time points, Y i = ( Y i 1 , · · · , Y iT ) ′ Covariates: T × p covariates matrix X i = ( x i1 , · · · , x iT ) ′ Time, gender, age ... Methods: Methods for Non-Gaussian Longitudinal Data AFr. Donneau (ULg) Multiple imputation methods for incomplete longitudinal ordinal data: a simulation study 3 / 21

  8. Introduction Ordinal longitudinal data Analysis of ordinal longitudinal data Units: Subjects, objects ( i = 1 , · · · , N ) Outcome: Ordinal variable Y with K levels Measurement: Repeated at T time points, Y i = ( Y i 1 , · · · , Y iT ) ′ Covariates: T × p covariates matrix X i = ( x i1 , · · · , x iT ) ′ Time, gender, age ... Methods: Methods for Non-Gaussian Longitudinal Data Generalized estimating equations (GEE) AFr. Donneau (ULg) Multiple imputation methods for incomplete longitudinal ordinal data: a simulation study 3 / 21

  9. Introduction Ordinal longitudinal data Analysis of ordinal longitudinal data Units: Subjects, objects ( i = 1 , · · · , N ) Outcome: Ordinal variable Y with K levels Measurement: Repeated at T time points, Y i = ( Y i 1 , · · · , Y iT ) ′ Covariates: T × p covariates matrix X i = ( x i1 , · · · , x iT ) ′ Time, gender, age ... Methods: Methods for Non-Gaussian Longitudinal Data Generalized estimating equations (GEE) Problem: Missing data AFr. Donneau (ULg) Multiple imputation methods for incomplete longitudinal ordinal data: a simulation study 3 / 21

  10. Missing data Missingness Missingness Missing data patterns: ◮ Drop out / attrition ◮ Non-monotone missingness AFr. Donneau (ULg) Multiple imputation methods for incomplete longitudinal ordinal data: a simulation study 4 / 21

  11. Missing data Missingness Missingness Missing data patterns: ◮ Drop out / attrition ◮ Non-monotone missingness Missing data mechanism (Little and Rubin, 1987) MCAR - Missing completely at random ◮ independent of (both observed and unobserved) measurements MAR - Missing at random ◮ conditional on observed measurements, independent of unobserved measurements MNAR - Missing not at random ◮ dependent on unobserved and (also possibly) observed measurements AFr. Donneau (ULg) Multiple imputation methods for incomplete longitudinal ordinal data: a simulation study 4 / 21

  12. Analysis - GEE Methods for Non-Gaussian Longitudinal Data GEE ◮ GEE - extension of Generalized Linear Models to longitudinal data AFr. Donneau (ULg) Multiple imputation methods for incomplete longitudinal ordinal data: a simulation study 5 / 21

  13. Analysis - GEE Methods for Non-Gaussian Longitudinal Data GEE ◮ GEE - extension of Generalized Linear Models to longitudinal data ◮ Ordinal data (proportional odds model) - needs some transformations AFr. Donneau (ULg) Multiple imputation methods for incomplete longitudinal ordinal data: a simulation study 5 / 21

  14. Analysis - GEE Methods for Non-Gaussian Longitudinal Data GEE ◮ GEE - extension of Generalized Linear Models to longitudinal data ◮ Ordinal data (proportional odds model) - needs some transformations ◮ Define of a ( K − 1) expanded vector of binary responses Y ∗ ij = ( Y ∗ ij 1 , ..., Y ∗ ij , ( K − 1) )’ where Y ∗ ijk = 1 if Y ij = k and 0 otherwise ◮ logit [ Pr ( Y ij ≤ k )] = logit [ Pr ( Y ∗ ijk = 1)] = β 0 k + x ′ ij β AFr. Donneau (ULg) Multiple imputation methods for incomplete longitudinal ordinal data: a simulation study 5 / 21

  15. Analysis - GEE Methods for Non-Gaussian Longitudinal Data GEE ◮ GEE - extension of Generalized Linear Models to longitudinal data ◮ Ordinal data (proportional odds model) - needs some transformations ◮ Define of a ( K − 1) expanded vector of binary responses Y ∗ ij = ( Y ∗ ij 1 , ..., Y ∗ ij , ( K − 1) )’ where Y ∗ ijk = 1 if Y ij = k and 0 otherwise ◮ logit [ Pr ( Y ij ≤ k )] = logit [ Pr ( Y ∗ ijk = 1)] = β 0 k + x ′ ij β N ∂ π i ′ � ∂ β W − 1 ( Y ∗ i − π i ) = 0 i i =1 i ) and W i = V 1 / 2 R i V 1 / 2 where Y ∗ i = ( Y ∗ i 1 , ..., Y ∗ iT ) ′ , π i = E ( Y ∗ with V i the i i diagonal matrix of the variance of the element of Y ∗ i . The matrix R i is the ’working’ correlation matrix that expresses the dependence among repeated observations over the subjects. AFr. Donneau (ULg) Multiple imputation methods for incomplete longitudinal ordinal data: a simulation study 5 / 21

  16. Analysis - GEE Methods for Non-Gaussian Longitudinal Data GEE - Large sample properties √ N (ˆ β − β ) N (0 , I − 1 I 1 I − 1 ) 0 0 ◮ ˆ β are consistent even if working correlation matrix is incorrect ◮ uncorrected specification of the correlation structure affects efficiency of ˆ β ◮ valid only under MCAR AFr. Donneau (ULg) Multiple imputation methods for incomplete longitudinal ordinal data: a simulation study 6 / 21

  17. Analysis - GEE Methods for Non-Gaussian Longitudinal Data GEE - Large sample properties √ N (ˆ β − β ) N (0 , I − 1 I 1 I − 1 ) 0 0 ◮ ˆ β are consistent even if working correlation matrix is incorrect ◮ uncorrected specification of the correlation structure affects efficiency of ˆ β ◮ valid only under MCAR ◮ What if not MCAR? AFr. Donneau (ULg) Multiple imputation methods for incomplete longitudinal ordinal data: a simulation study 6 / 21

  18. Analysis - GEE Methods for Non-Gaussian Longitudinal Data GEE - Large sample properties √ N (ˆ β − β ) N (0 , I − 1 I 1 I − 1 ) 0 0 ◮ ˆ β are consistent even if working correlation matrix is incorrect ◮ uncorrected specification of the correlation structure affects efficiency of ˆ β ◮ valid only under MCAR ◮ What if not MCAR? ◮ Solution: Use Multiple Imputation (MI) as a preliminary step AFr. Donneau (ULg) Multiple imputation methods for incomplete longitudinal ordinal data: a simulation study 6 / 21

  19. Multiple imputation Multiple imputation Multiple imputation Idea Replace each missing value by a set of M > 1 plausible values drawn from conditional distribution of unobserved values given observed ones AFr. Donneau (ULg) Multiple imputation methods for incomplete longitudinal ordinal data: a simulation study 7 / 21

  20. Multiple imputation Multiple imputation Multiple imputation Idea Replace each missing value by a set of M > 1 plausible values drawn from conditional distribution of unobserved values given observed ones How 1. Imputation stage - Y missing ⇒ Y 1 ij , · · · , Y M ij ij 2. Analysis stage - Analyze the M completed datasets using GEE � ˆ � var ( ˆ β m , ˆ β m ) , m = 1 , · · · , M 3. Pooling stage - Combination of the M results M ∗ = 1 � 1 + 1 � ˆ � ˆ β β m T = W + B M M m =1 var ( ˆ ∗ )( ˆ ∗ ) ′ � M � M m =1 ( ˆ β m − ˆ β m − ˆ 1 β m ) and B = 1 where W = m =1 ˆ β β M − 1 M AFr. Donneau (ULg) Multiple imputation methods for incomplete longitudinal ordinal data: a simulation study 7 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend