multilevel markov chain monte carlo
play

Multilevel Markov Chain Monte Carlo with Applications in Subsurface - PowerPoint PPT Presentation

Multilevel Markov Chain Monte Carlo with Applications in Subsurface Flow Robert Scheichl Department of Mathematical Sciences Collaborators: AL Teckentrup (Warwick) & C Ketelsen (Boulder) Thanks also to my Bath colleagues F. Lindgren (Stats)


  1. Multilevel Markov Chain Monte Carlo with Applications in Subsurface Flow Robert Scheichl Department of Mathematical Sciences Collaborators: AL Teckentrup (Warwick) & C Ketelsen (Boulder) Thanks also to my Bath colleagues F. Lindgren (Stats) & R. Jack (Physics) Workshop on “Stochastic and Multiscale Inverse Problems” October 2nd-3rd 2014, Ecole des Ponts Paristech, Paris R. Scheichl (Bath, UK) Multilevel MCMC & UQ in Subsurface Flow Ecole des Ponts, Oct ’14 1 / 35

  2. Introduction Many problems involve PDEs with spatially varying data which is subject to uncertainty . Example: groundwater flow in rock underground. Uncertainty enters PDE via its coefficients (random fields) . The quantity of interest : is a random number or field derived from the PDE solution. Examples: effective permeability or breakthrough time of a pollution plume Typical Computational Goal: expected value of quantity of interest . ( Uncertainty quantification ) R. Scheichl (Bath, UK) Multilevel MCMC & UQ in Subsurface Flow Ecole des Ponts, Oct ’14 2 / 35

  3. Uncertainty Propagation The Forward Problem R. Scheichl (Bath, UK) Multilevel MCMC & UQ in Subsurface Flow Ecole des Ponts, Oct ’14 3 / 35

  4. Example: Uncertainty in Subsurface Flow (eg. risk analysis of radwaste disposal or optimisation of oil recovery) EDZ CROWN SPACE WASTE VAULTS FAULTED GRANITE GRANITE DEEP SKIDDAW N-S SKIDDAW DEEP LATTERBARROW N-S LATTERBARROW FAULTED TOP M-F BVG TOP M-F BVG FAULTED BLEAWATH BVG � q + k ∇ p = Darcy’s Law: f BLEAWATH BVG FAULTED F-H BVG F-H BVG FAULTED UNDIFF BVG Incompressibility: ∇ · � q = 0 UNDIFF BVG FAULTED N-S BVG N-S BVG FAULTED CARB LST CARB LST + Boundary Conditions FAULTED COLLYHURST COLLYHURST FAULTED BROCKRAM BROCKRAM SHALES + EVAP FAULTED BNHM BOTTOM NHM FAULTED DEEP ST BEES DEEP ST BEES FAULTED N-S ST BEES N-S ST BEES FAULTED VN-S ST BEES VN-S ST BEES FAULTED DEEP CALDER DEEP CALDER FAULTED N-S CALDER N-S CALDER FAULTED VN-S CALDER VN-S CALDER MERCIA MUDSTONE QUATERNARY Rock strata at Sellafield (potential UK radwaste site in 90s) c � NIREX UK Ltd R. Scheichl (Bath, UK) Multilevel MCMC & UQ in Subsurface Flow Ecole des Ponts, Oct ’14 4 / 35

  5. Example: Uncertainty in Subsurface Flow (eg. risk analysis of radwaste disposal or optimisation of oil recovery) EDZ CROWN SPACE WASTE VAULTS FAULTED GRANITE GRANITE DEEP SKIDDAW N-S SKIDDAW DEEP LATTERBARROW N-S LATTERBARROW FAULTED TOP M-F BVG TOP M-F BVG FAULTED BLEAWATH BVG � q + k ∇ p = Darcy’s Law: f BLEAWATH BVG FAULTED F-H BVG F-H BVG FAULTED UNDIFF BVG → → uncertain k Incompressibility: ∇ · � q = 0 uncertain p , � UNDIFF BVG q FAULTED N-S BVG N-S BVG FAULTED CARB LST CARB LST + Boundary Conditions FAULTED COLLYHURST COLLYHURST FAULTED BROCKRAM BROCKRAM SHALES + EVAP FAULTED BNHM BOTTOM NHM FAULTED DEEP ST BEES DEEP ST BEES FAULTED N-S ST BEES N-S ST BEES FAULTED VN-S ST BEES VN-S ST BEES FAULTED DEEP CALDER DEEP CALDER FAULTED N-S CALDER N-S CALDER FAULTED VN-S CALDER VN-S CALDER MERCIA MUDSTONE QUATERNARY Rock strata at Sellafield (potential UK radwaste site in 90s) c � NIREX UK Ltd R. Scheichl (Bath, UK) Multilevel MCMC & UQ in Subsurface Flow Ecole des Ponts, Oct ’14 4 / 35

  6. Stochastic Modelling of Uncertainty: Model uncertain conductivity tensor k as a lognormal random field Typical simplified model (prior): log k ( x , ω ) isotropic, scalar, Gaussian e.g. meanfree with exponential covariance R ( x , y ) := σ 2 exp ( −� x − y � /λ ) e.g. truncated Karhunen-Lo` eve expansion typical realisation 64 , σ 2 = 8) 1 ( λ = s � √ µ j φ j ( x ) Z j ( ω ) , Z j ( ω ) iid N (0 , σ 2 ) log k ( x , ω ) ≈ j =1 R. Scheichl (Bath, UK) Multilevel MCMC & UQ in Subsurface Flow Ecole des Ponts, Oct ’14 5 / 35

  7. Stochastic Modelling of Uncertainty: Model uncertain conductivity tensor k as a lognormal random field Typical simplified model (prior): log k ( x , ω ) isotropic, scalar, Gaussian e.g. meanfree with exponential covariance R ( x , y ) := σ 2 exp ( −� x − y � /λ ) e.g. truncated Karhunen-Lo` eve expansion typical realisation 64 , σ 2 = 8) 1 ( λ = s � √ µ j φ j ( x ) Z j ( ω ) , Z j ( ω ) iid N (0 , σ 2 ) log k ( x , ω ) ≈ j =1 1 Typical quantities of interest: 0.9 0.8 0.7 0.6 p ( x ∗ ), � q ( x ∗ ), travel time, water cut,. . . 0.5 0.4 0.3 � 0.2 0.1 outflow through Γ out : Q out = Γ out � q · d � n 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 R. Scheichl (Bath, UK) Multilevel MCMC & UQ in Subsurface Flow Ecole des Ponts, Oct ’14 5 / 35

  8. Why is this problem so challenging? R. Scheichl (Bath, UK) Multilevel MCMC & UQ in Subsurface Flow Ecole des Ponts, Oct ’14 6 / 35

  9. Why is this problem so challenging? 0 10 λ =0.01 λ =0.1 λ =1 −2 10 eigenvalue −4 10 −6 10 0 1 2 3 10 10 10 10 n KL-eigenvalues in 1D Convergence of q | x =1 w.r.t. s R. Scheichl (Bath, UK) Multilevel MCMC & UQ in Subsurface Flow Ecole des Ponts, Oct ’14 6 / 35

  10. Why is this problem so challenging? 0 10 λ =0.01 λ =0.1 λ =1 −2 10 eigenvalue −4 10 −6 10 0 1 2 3 10 10 10 10 n KL-eigenvalues in 1D Convergence of q | x =1 w.r.t. s Small correlation length λ = ⇒ high dimension s ≫ 10 and fine mesh h ≪ 1 Large σ 2 & exponential k max k min > 10 6 = ⇒ large heterogeneity R. Scheichl (Bath, UK) Multilevel MCMC & UQ in Subsurface Flow Ecole des Ponts, Oct ’14 6 / 35

  11. Monte Carlo for large scale problems (plain vanilla) Model( h ) Output Z s ( ω ) ∈ R s X h ( ω ) ∈ R M h − → − → Q h , s ( ω ) ∈ R random input state vector quantity of interest e.g. Z s multivariate Gaussian; X h numerical solution of PDE; Q h , s a (non)linear functional of X h R. Scheichl (Bath, UK) Multilevel MCMC & UQ in Subsurface Flow Ecole des Ponts, Oct ’14 7 / 35

  12. Monte Carlo for large scale problems (plain vanilla) Model( h ) Output Z s ( ω ) ∈ R s X h ( ω ) ∈ R M h − → − → Q h , s ( ω ) ∈ R random input state vector quantity of interest e.g. Z s multivariate Gaussian; X h numerical solution of PDE; Q h , s a (non)linear functional of X h h → 0 , s →∞ Q ( ω ) inaccessible random variable s.t. E [ Q h , s ] − → E [ Q ] and | E [ Q h , s − Q ] | = O ( h α ) + O ( s − α ′ ) Standard Monte Carlo estimator for E [ Q ]: N � Q MC := 1 Q ( i ) ˆ h , s N i =1 where { Q ( i ) h , s } N i =1 are i.i.d. samples computed with Model( h ) R. Scheichl (Bath, UK) Multilevel MCMC & UQ in Subsurface Flow Ecole des Ponts, Oct ’14 7 / 35

  13. Convergence of plain vanilla MC (mean square error) : � � 2 �� ˆ � 2 � V [ Q h , s ] Q MC − E [ Q ] = + E [ Q h , s − Q ] E � �� � N � �� � � �� � =: MSE sampling error model error (“bias”) Typical (2D) : α = 1 ⇒ MSE = O ( N − 1 ) + O ( M − 1 h ) = O ( ε 2 ) R. Scheichl (Bath, UK) Multilevel MCMC & UQ in Subsurface Flow Ecole des Ponts, Oct ’14 8 / 35

  14. Convergence of plain vanilla MC (mean square error) : � � 2 �� ˆ � 2 � V [ Q h , s ] Q MC − E [ Q ] = + E [ Q h , s − Q ] E � �� � N � �� � � �� � =: MSE sampling error model error (“bias”) Typical (2D) : α = 1 ⇒ MSE = O ( N − 1 ) + O ( M − 1 h ) = O ( ε 2 ) Thus M h ∼ N ∼ ε − 2 and Cost = O ( NM h ) = O ( ε − 4 ) (w. MG solver) (e.g. for ε = 10 − 3 we get M h ∼ N ∼ 10 6 and Cost = O (10 12 ) !!) Quickly becomes prohibitively expensive ! Complexity Theorem for (plain vanilla) Monte Carlo Assume that E [ Q h , s ] → E [ Q ] with O ( h α ) and cost per sample is O ( h − γ ). Then � α � ε − 2 − γ Cost( ˆ Q MC ) = O to obtain MSE = O ( ε 2 ) . R. Scheichl (Bath, UK) Multilevel MCMC & UQ in Subsurface Flow Ecole des Ponts, Oct ’14 8 / 35

  15. Numerical Example (Standard Monte Carlo) � � D = (0 , 1) 2 , covariance R ( x , y ) := σ 2 exp − � x − y � 2 and Q = � − k ∂ p ∂ x 1 � L 1 ( D ) λ using mixed FEs and the AMG solver amg1r5 [Ruge, St¨ uben, 1992] R. Scheichl (Bath, UK) Multilevel MCMC & UQ in Subsurface Flow Ecole des Ponts, Oct ’14 9 / 35

  16. Numerical Example (Standard Monte Carlo) � � D = (0 , 1) 2 , covariance R ( x , y ) := σ 2 exp − � x − y � 2 and Q = � − k ∂ p ∂ x 1 � L 1 ( D ) λ using mixed FEs and the AMG solver amg1r5 [Ruge, St¨ uben, 1992] Numerically observed FE-error: ≈ O ( h 3 / 4 ) = ⇒ α ≈ 3 / 4. Numerically observed cost/sample: ≈ O ( M h ) = O ( h − 2 ) = ⇒ γ ≈ 2. R. Scheichl (Bath, UK) Multilevel MCMC & UQ in Subsurface Flow Ecole des Ponts, Oct ’14 9 / 35

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend