multidimensional scaling and flat split systems
play

Multidimensional scaling and flat split systems Monika Balvoi ut - PowerPoint PPT Presentation

Multidimensional scaling and flat split systems Monika Balvoi ut e joint work with David Bryant University of Otago 6th Nov 2014 1 / 28 Splits and Split systems A split S = A | B is a bipartition of a set of taxa X into two non empty


  1. Multidimensional scaling and flat split systems Monika Balvoči¯ ut˙ e joint work with David Bryant University of Otago 6th Nov 2014 1 / 28

  2. Splits and Split systems A split S = A | B is a bipartition of a set of taxa X into two non empty subsets such that X = A ∪ B and A ∩ B = ∅ . A split system S is set of splits { S } over some set of taxa X . 2 / 28

  3. Equivalent representations of flat split systems b a c d Flat split system Oriented Planar split c b d b matroid splits network a ℓ ∞ a d c 3 / 28

  4. FlatNJ – computing planar split networks Compute building blocks Identify neighbors Agglomerate Reverse agglomeration Weight and filter M. Balvoči¯ ut˙ e, A. Spillner and V. Moulton, FlatNJ:..., Syst. Biol. 2014, 63(3): 383–96 4 / 28

  5. Neighbors e and f are neighbors a a d a b e e e c b d d c e c b a a a d f b f f c d d c f b b c 5 / 28

  6. Not Neighbors b and f are not neighbors d a b a a b e b e c c d e d c b a a a f e f f f d c e c d d e c 6 / 28

  7. Agglomeration a e a d a e b e a b c d d e b c b c a a d a f b f d c f c d d f b c b c a a a d a b b e,f e,f e,f c d d e,f b c d c b c 7 / 28

  8. Agglomeration a e a d a e b e a b c d d e b c b c a a d a f b f d c f c d d f b c b c a a a d a b b e,f e,f e,f c d d e,f b c d c b c 7 / 28

  9. Agglomeration a a d a e,f b a b e,f e,f c d d b c d c b e,f c b a,e,f d c 7 / 28

  10. Agglomeration a a d a e,f b a b e,f e,f c d d b c d c b e,f c b a,e,f d c 7 / 28

  11. Reversing agglomeration b a,e,f d c a a e,f e b f d b d c c 8 / 28

  12. Reversing agglomeration b a,e,f d c a a e,f e b f d b d c c 8 / 28

  13. Reversing agglomeration b a,e,f d c a a e,f e b f d b d c c 8 / 28

  14. Reversing agglomeration b a,e,f d c a a e,f e b f d b d c c 8 / 28

  15. Q: When does it fail? A: When there are no neighbours. 9 / 28

  16. Affine splits Split – line ℓ S in R 2 − X ; Split system – arrangement of lines A in R 2 − X ; X X B A Split Split system 10 / 28

  17. Neighbours in affine split systems b b a a d d e e g g Neighbours Not neighbours 11 / 28

  18. For example a a c ⇒ b c b d d e e f f Input 12 / 28

  19. For example a a c ⇒ b c b d d e e f f Input Output 12 / 28

  20. For example a a c ⇒ b c b d d e e f f Input Output 12 / 28

  21. Multidimensional scaling (MDS) Plot points in low (e.g. two) dimensional space based on their pairwise distances. 1 2 3 n . . . 1 1 0 d 12 d 13 . . . d 1 n n 2 d 12 0 d 23 . . . d 2 n 3 d 13 d 23 0 . . . d 3 n ⇒ . . . 3 . . . . . ... . . . . . . . . . . 2 n 0 d 1 n d 2 n d 3 n . . . 13 / 28

  22. Multidimensional scaling (MDS) Plot points in low (e.g. two) dimensional space based on their pairwise distances. 1 2 3 n . . . 1 1 0 d 12 d 13 . . . d 1 n n 2 d 12 0 d 23 . . . d 2 n 3 d 13 d 23 0 . . . d 3 n ⇒ . . . 3 . . . . . ... . . . . . . . . . . 2 n 0 d 1 n d 2 n d 3 n . . . Minimize the difference between input and output distances. 13 / 28

  23. MSD j � = i ( d ij − δ ij ) 2 j � = i ( d 2 ij − δ 2 ij ) 2 � � � � i i Stress �� � j � = i ( d ij − δ ij ) 2 i � � j � = i d 2 ij i . . . �� � j � = i w ij ( d ij − δ ij ) 2 i � � j � = i w ij d 2 ij i min 14 / 28

  24. MSD j � = i ( d ij − δ ij ) 2 j � = i ( d 2 ij − δ 2 ij ) 2 � � � � i i Stress �� � j � = i ( d ij − δ ij ) 2 i � � j � = i d 2 ij i . . . �� � j � = i w ij ( d ij − δ ij ) 2 i � � j � = i w ij d 2 ij i min d ij – actual distance; δ ij – plotted distance 14 / 28

  25. MSD j � = i ( d ij − δ ij ) 2 j � = i ( d 2 ij − δ 2 ij ) 2 � � � � i i Stress �� � j � = i ( d ij − δ ij ) 2 i � � j � = i d 2 ij i . . . �� � j � = i w ij ( d ij − δ ij ) 2 i � � j � = i w ij d 2 ij i min d ij – actual distance; δ ij – plotted distance 14 / 28

  26. MSD j � = i ( d ij − δ ij ) 2 j � = i ( d 2 ij − δ 2 ij ) 2 � � � � i i Stress �� � j � = i ( d ij − δ ij ) 2 i � � j � = i d 2 ij i . . . �� � j � = i w ij ( d ij − δ ij ) 2 i � � j � = i w ij d 2 ij i min d ij – actual distance; δ ij – plotted distance 14 / 28

  27. MSD j � = i ( d ij − δ ij ) 2 j � = i ( d 2 ij − δ 2 ij ) 2 � � � � i i Stress �� � j � = i ( d ij − δ ij ) 2 i � � j � = i d 2 ij i . . . �� � j � = i w ij ( d ij − δ ij ) 2 i � � j � = i w ij d 2 ij i min d ij – actual distance; δ ij – plotted distance 14 / 28

  28. MSD j � = i ( d ij − δ ij ) 2 j � = i ( d 2 ij − δ 2 ij ) 2 � � � � i i Stress �� � j � = i ( d ij − δ ij ) 2 i � � j � = i d 2 ij i . . . �� � j � = i w ij ( d ij − δ ij ) 2 i � � j � = i w ij d 2 ij i min d ij – actual distance; δ ij – plotted distance 14 / 28

  29. MSD j � = i ( d ij − δ ij ) 2 j � = i ( d 2 ij − δ 2 ij ) 2 � � � � i i Stress �� � j � = i ( d ij − δ ij ) 2 i � � j � = i d 2 ij i . . . �� � j � = i w ij ( d ij − δ ij ) 2 i � � j � = i w ij d 2 ij i min d ij – actual distance; δ ij – plotted distance 14 / 28

  30. MSD S. L. France & J. D. Carroll, Two-Way Multidimensional Scaling: A Review, IEEE Trans. Syst., Man, Cybern.,Syst 2011, 41(5): 644–61 15 / 28

  31. Agglomerative approach to MDS Take pairwise distance matrix Identify neighbours Agglomerate Reverse 16 / 28

  32. Agglomeration g a d e b 17 / 28

  33. Agglomeration g a d e b 17 / 28

  34. Agglomeration g a d e b 17 / 28

  35. Agglomeration g a d c e b 17 / 28

  36. Agglomeration g a d c e b 17 / 28

  37. Agglomeration g a d 1 d 3 d c d m e d 2 b � 2 d 2 1 +2 d 2 2 − d 2 d m = 3 4 17 / 28

  38. Agglomeration g a d 1 d 3 d c d m e d 2 b � 2 d 2 1 +2 d 2 2 − d 2 d m = 3 4 17 / 28

  39. Agglomeration g a d 1 d 3 d c d m e d 2 b � 2 d 2 1 +2 d 2 2 − d 2 d m = 3 4 17 / 28

  40. Agglomeration 1 2 . . . m a b 1 0 d 12 . . . d 1 m d a 1 d b 1 2 d 12 0 . . . d 2 m d a 2 d b 2 . . . . . . ... . . . . . . . . . . . . m d 1 m d 2 m . . . 0 d am d bm a d a 1 d a 2 . . . d am 0 d ab b d b 1 d b 2 . . . d bm d ab 0 1 2 m c . . . � 2 d 2 a 1 +2 d 2 b 1 − d 2 1 0 d 12 . . . d 1 m d c 1 = ab 4 � 2 d 2 a 2 +2 d 2 b 2 − d 2 2 0 d c 2 = d 12 . . . d 2 m ab 4 . . . . . ... . . . . . . . . . . � am +2 d 2 bm − d 2 2 d 2 m 0 d cm = d 1 m d 2 m . . . ab 4 c d c 1 d c 2 . . . d cm 0 18 / 28

  41. Agglomeration 1 2 . . . m a b 1 0 d 12 . . . d 1 m d a 1 d b 1 2 d 12 0 . . . d 2 m d a 2 d b 2 . . . . . . ... . . . . . . . . . . . . m d 1 m d 2 m . . . 0 d am d bm a d a 1 d a 2 . . . d am 0 d ab b d b 1 d b 2 . . . d bm d ab 0 1 2 m c . . . � 2 d 2 a 1 +2 d 2 b 1 − d 2 1 0 d 12 . . . d 1 m d c 1 = ab 4 � 2 d 2 a 2 +2 d 2 b 2 − d 2 2 0 d c 2 = d 12 . . . d 2 m ab 4 . . . . . ... . . . . . . . . . . � am +2 d 2 bm − d 2 2 d 2 m 0 d cm = d 1 m d 2 m . . . ab 4 c 0 d c 1 d c 2 . . . d cm 18 / 28

  42. Agglomeration 1 2 . . . m a b 1 0 d 12 . . . d 1 m d a 1 d b 1 2 d 12 0 . . . d 2 m d a 2 d b 2 . . . . . . ... . . . . . . . . . . . . m 0 d 1 m d 2 m . . . d am d bm a d a 1 d a 2 . . . d am 0 d ab b d b 1 d b 2 . . . d bm d ab 0 ⇓ 1 2 . . . m c � 2 d 2 a 1 +2 d 2 b 1 − d 2 1 0 d 12 . . . d 1 m d c 1 = ab 4 � 2 d 2 a 2 +2 d 2 b 2 − d 2 2 d 12 0 . . . d 2 m d c 2 = ab 4 . . . . . ... . . . . . . . . . . � 2 d 2 am +2 d 2 bm − d 2 m d 1 m d 2 m . . . 0 d cm = ab 4 0 c d c 1 d c 2 . . . d cm 18 / 28

  43. Expansion g d c e 19 / 28

  44. Expansion g d c e 19 / 28

  45. Expansion g a d c e b 19 / 28

  46. Expansion g b ′ a d c e b a ′ 19 / 28

  47. Expansion We know: g d cg a d c d cd d ce e b 20 / 28

  48. Expansion We know: g d cg a d c d cd d ce e b c = { a, b } 20 / 28

  49. Expansion We know: g d cg a d c d cd d ce e b c = { a, b } d ag , d bg d ad , d bd d ae , d be 20 / 28

  50. Expansion We know: We don’t know: Actual dimension g d cg a d c d cd d ce e b c = { a, b } d ag , d bg d ad , d bd d ae , d be 20 / 28

  51. Expansion g d c e 21 / 28

  52. Expansion g d c e 21 / 28

  53. Expansion g a = − b d c e b 21 / 28

  54. Expansion g a = − b d c e b 21 / 28

  55. Expansion g δ ag δ bg a = − b δ ad δ ab δ ae d c δ bd e δ be b 21 / 28

  56. Expansion g δ ag δ bg a = − b δ ad δ ab δ ae d c δ bd e δ be b δ ab ∼ d ab δ ag ∼ d ag δ ad ∼ d ad δ ae ∼ d ae δ bg ∼ d bg δ bd ∼ d bd δ be ∼ d be 21 / 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend