motivations
play

Motivations Present and future probes of DE: BAO, Weak Lensing, Ly , - PowerPoint PPT Presentation

Dark Matter Clustering from the Renormalization Group and implications for cosmic acceleration Massimo Pietroni - Infn Padova (in collaboration with Sabino Matarrese) Motivations: BAO and all that Eulerian Perturbation Theory:


  1. Dark Matter Clustering from the Renormalization Group and implications for cosmic acceleration Massimo Pietroni - Infn Padova (in collaboration with Sabino Matarrese) • Motivations: BAO and all that • Eulerian Perturbation Theory: Traditional and Compact forms. Results. • RG approach: formulation and preliminary results

  2. Motivations Present and future probes of DE: BAO, Weak Lensing, Ly α , 21cm, ... they all require improved computational techniques Ex.: BAO from WFMOS (2M galaxies at 0.5<z<1.3) Goal: predict the LSS power spectrum to % accuracy.

  3. Present Status: Pert. Theory 1-loop PT Jeong Komatsu, ‘06 z=1 z=0 Scoccimarro, ‘04 Non-linearities becomes more and more relevant in the DE-sensitive range 0<z<1

  4. Present Status: N-body simulations+fitting functions Huff et al, ‘06 ~10% discrepancies between fitting functions and simulations redshift-space distorsions quite hard

  5. Goals • Improve Pert. Theory towards lower z and higher k • Study the effect of non-linearities on BAO • Redshift-space distorsions

  6. Dark Matter Hydrodynamics The DM particle distribution function, , obeys the Vlasov equation: f ( x , p , τ ) ∂ f ∂τ + p am · ∇ f − am ∇ φ · ∇ p f = 0 ∇ 2 φ = 3 2 Ω M H 2 δ p = amd x and where d τ � Taking momentum moments, i.e., d 3 p f ( x , p , τ ) ≡ ρ ( x , τ ) ≡ ρ ( τ )[1 + δ ( x , τ )] � d 3 p p i amf ( x , p , τ ) ≡ ρ ( x , τ ) v i ( x , τ ) d 3 p p i p j � a 2 m 2 f ( x , p , τ ) ≡ ρ ( x , τ ) v i ( x , τ ) v j ( x , τ ) + σ ij ( x , τ ) . . . and neglecting and higher moments (single stream approximation), one gets... σ ij

  7. Equations of motion for single-stream cosmology ∂ δ ∂ v ∂ τ + ∇ · [(1 + δ ) v ] = 0 , ∂ τ + H v + ( v · ∇ ) v = −∇ φ In Fourier space, ( defining ), θ ( x , τ ) ≡ ∇ · v ( x , τ ) ∂ δ ( k , τ ) � d 3 k 1 d 3 k 2 δ D ( k − k 1 − k 2 ) α ( k 1 , k 2 ) θ ( k 1 , τ ) δ ( k 2 , τ ) = 0 + θ ( k , τ ) + ∂ τ ∂ θ ( k , τ ) + H θ ( k , τ ) + 3 � 2 Ω M H 2 δ ( k , τ ) + d 3 k 1 d 3 k 2 δ D ( k − k 1 − k 2 ) β ( k 1 , k 2 ) θ ( k 1 , τ ) θ ( k 2 , τ ) = 0 ∂ τ α ( k 1 , k 2 ) ≡ ( k 1 + k 2 ) · k 1 mode-mode coupling controlled by: k 2 1 β ( k 1 , k 2 ) ≡ | k 1 + k 2 | 2 ( k 1 · k 2 ) 2 k 2 1 k 2 2

  8. Traditional Perturbation Theory fastest growing mode only ∞ � Assume EdS, , then solutions have the form δ ( k , τ ) = a n ( τ ) δ n ( k ) Ω M = 1 n =1 ∞ � θ ( k , τ ) = − H ( τ ) a n ( τ ) θ n ( k ) n =1 fastest growing mode only with � d 3 q 1 . . . d 3 q n δ D ( k − q 1 ... n ) F n ( q 1 , . . . , q n ) δ 0 ( q 1 ) . . . δ 0 ( q n ) δ n ( k ) = � d 3 q 1 . . . d 3 q n δ D ( k − q 1 ... n ) G n ( q 1 , . . . , q n ) δ 0 ( q 1 ) . . . δ 0 ( q n ) θ n ( k ) = The Kernels and satisfy recursion relations, with , and : F n G n δ 1 = θ 1 = δ 0 F 1 = G 1 = 1 n − 1 G m ( q 1 , . . . , q m ) � F n ( q 1 , . . . , q n ) = (2 n + 3)( n − 1) m =1 × [(2 n + 1) α ( k 1 , k 2 ) F n − m ( q m + 1 , . . . , q n ) + 2 β ( k 1 , k 2 ) G n − m ( q m + 1 , . . . , q n )] G n ( q 1 , . . . , q n ) = · · · where , k 1 = q 1 + . . . + q m k 2 = q m + 1 + . . . + q n

  9. Traditional Diagrammar Fry, ‘84 Goroff et al, ‘86 Wise, ‘88 Scoccimarro, Frieman, ‘96 .... An infinite number of basic vertices! very redundant!! Example: 1-loop correction to the density power spectrum: a.k.a. “P13” a.k.a. “P22” bispectrum:

  10. Compact Perturbation Theory Crocce, Scoccimarro ‘05 The hydrodynamical equations for density and velocity perturbations, ∂ v ∂ δ ∂ τ + ∇ · [(1 + δ ) v ] = 0 , ∂ τ + H v + ( v · ∇ ) v = −∇ φ , can be written in a compact form (we assume an EdS model): ( δ ab ∂ η + Ω ab ) ϕ b ( η , k ) = e η γ abc ( k , − k 1 , − k 2 ) ϕ b ( η , k 1 ) ϕ c ( η , k 2 ) (1) � ϕ 1 ( η , k ) � � � δ ( η , k ) � � η = log a 1 − 1 ≡ e − η Ω = where ϕ 2 ( η , k ) − θ ( η , k ) / H − 3 / 2 3 / 2 a in and the only non-zero components of the vertex are γ 121 ( k 1 , k 2 , k 3 ) = γ 112 ( k 1 , k 3 , k 2 ) = δ D ( k 1 + k 2 + k 3 ) ( k 2 + k 3 ) · k 2 2 k 2 2 γ 222 ( k 1 , k 2 , k 3 ) = δ D ( k 1 + k 2 + k 3 ) | k 2 + k 3 | 2 k 2 · k 3 2 k 2 2 k 2 3

  11. An action principle Matarrese, M.P ., ‘06 Eq. (1) can be derived by varying the action d η 1 d η 2 χ a g − 1 � � d η e η γ abc χ a ϕ b ϕ c S = ab ϕ b − where the auxiliary field has been introduced and is the retarded propagator: χ a ( η , k ) g ab ( η 1 , η 2 ) ( δ ab ∂ η + Ω ab ) g bc ( η , η ′ ) = δ ac δ D ( η − η ′ ) ϕ 0 a ( η , k ) = g ab ( η , η ′ ) ϕ 0 so that is the solution of the linear equation b ( η ′ , k ) � 3 � B = 1 2 B + A e − 5 / 2( η 1 − η 2 ) � η 1 > η 2 3 2 5 Explicitly, one finds: g ( η 1 , η 2 ) = 0 η 1 < η 2 � � A = 1 2 − 2 growing mode − 3 3 5 decaying mode � 1 � � � 1 ϕ 0 b ( η ′ , k ) ∝ u b = , Initial conditions: 1 − 3 / 2

  12. A generating functional The probability of the configuration , given the initial condition , is ϕ a ( η i ) ϕ a ( η f ) P [ ϕ a ( η f ); ϕ a ( η i )] = δ [ ϕ a ( η f ) − ϕ a [ η f ; ϕ a ( η i )]] fixed extrema solution of the e.o.m. � η f � � � D ′′ ϕ a D χ b exp d η χ a [( δ ab ∂ η + Ω ab ) ϕ b − e η γ abc ϕ b ϕ c ] i ∼ η i only tree-level (saddle point) The generating functional at fixed initial conditions is � η f � � � Z [ J a , Λ b ; ϕ c ( η i )] = D ϕ a ( η f ) exp d η ( J a ϕ a + Λ b χ b ) P [ ϕ a ( η f ); ϕ a ( η i )] i η i

  13. We are interested in statistical correlations, not in single solutions: � Z [ J a , Λ b ; K ′ s ] = D ϕ c ( η i ) W [ ϕ c ( η i ); K ′ s ] Z [ J a , Λ b ; ϕ c ( η i )] where all the initial correlations are contained in � � − ϕ a ( η i ; k ) K a ( k ) − 1 W [ ϕ c ( η i ); K ′ s ] = exp 2 ϕ a ( η i ; k a ) K ab ( k a , k b ) ϕ b ( η i ; k b ) + · · · ( K ( k )) − 1 ab = P 0 ab ( k ) ≡ u a u b P 0 ( k ) In the case of Gaussian initial conditions: Putting all together... �� � − 1 � � � � 2 χ g − 1 P L g T − 1 χ + i χ g − 1 ϕ Z [ J , Λ ] = D ϕ D χ exp d η [ e η γ χϕϕ − J ϕ − Λ χ ] d η 1 d η 2 − i g ( η ) P 0 ( k ) g T ( η ′ ) where the initial conditions are encoded in the linear power spectrum: P L � � ab ( η , η ′ ; k ) ≡ ab Derivatives of Z w.r.t. the sources J and Λ give all the N-point correlation functions (power spectrum, bispectrum, ...) and the full propagator (k-dependent growth factor)

  14. Compact Diagrammar propagator (linear growth factor): a b − i g ab ( η a , η b ) P L ab ( η a , η b ; k ) power spectrum: b a a − i e η γ abc ( k a , k b , k c ) interaction vertex: b c Example: 1-loop correction to the density power spectrum: 1 1 1 1 1 1 + + 2 a.k.a. “P22” a.k.a. “P13” All known results in cosmological perturbation theory are expressible in terms of diagrams in which only a trilinear fundamental interaction appears

  15. 1-loop PT: how good is it? Makino et al.,’92 P ( k, τ ) = D 2 ( τ ) P 11 ( k ) + D 4 ( τ ) [ P 13 ( k ) + P 22 ( k )] + ... , � ∞ P 13 ( k ) = k 3 P 11 ( k ) � � � 12 r 2 − 158 + 100 r 2 − 42 r 4 + 3 1 + r � � 3 (7 r 2 + 2) ln r 2 − 1 � � � drP 11 ( kr ) � � 252 (2 π ) 2 r 3 1 − r � � 0 (9 d � 1 3 r + 7 x − 10 rx 2 � 2 � ∞ � 1 / 2 � � k 3 � 1 + r 2 − 2 rx � P 22 ( k ) = drP 11 ( kr ) dxP 11 k (1 + r 2 − 2 rx ) 2 98 (2 π ) 0 − 1 Linear growth factor : encodes different cosmologies at best than % level e D ( τ ) = δ 1 ( τ ) / δ initial Ex: (Jeong Komatsu, ‘06) P 22 ( Λ CDM) /P 22 (EdS) ∼ 1 . 006 ( z = 0) Notice: the 1-loop corrections at any time depend on the initial power spectrum ( )! P 11 ( k ) = P 0 ( k ) This will change in the RG...

  16. 1-loop PT performs quite well for z >1 (better than halo approach) Baryonic peaks modeled at few % Things get much worse at z<1... Jeong Komatsu, ‘06

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend